1
|
Pyszka I, Jędrzejewska B. Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6003. [PMID: 39685438 DOI: 10.3390/ma17236003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| |
Collapse
|
2
|
Li YX, Dai YX, Wang JZ, Chauvin J, Zhang XJ, Cosnier S, Marks RS, Shan D. A novel light-harvesting ZIF-9-TCPP as a promising FRET-based ratiometric fluorescence probe for sperm mobility. Analyst 2024. [PMID: 39569731 DOI: 10.1039/d4an01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The concentration of zinc ions in semen is significantly correlated with sperm viability and male fertility. In this work, a reliable ratiometric fluorescence probe (ZIF-9-TCPP) based on the efficient Förster resonance energy transfer (FRET) process between two luminophores, benzimidazole (BIM) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for Zn2+ detection has been constructed, where the emissions of BIM and TCPP are used as reference and detection signals. The proximity of BIM and TCPP in one framework (ZIF-9-TCPP) and the overlapped spectra between BIM and TCPP afford the attainment of a highly efficient FRET (around 90% efficiency). Efficient FRET improves the fluorescence intensity of porphyrin to enhance the sensitivity of detection. The unique spectral shift resulting from Zn2+ binding to the porphyrin ring ensures the selectivity of detection. In addition, the response mechanism of the proposed ratiometric probes to Zn2+ has been investigated. This work provides a convenient way to design an efficient FRET system and a promising method for sperm mobility detection.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, P R China
| | - Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, P R China
| | - Ju-Zheng Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| | - Jérome Chauvin
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P R China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 90089, Israel
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P R China
| |
Collapse
|
3
|
Sopbué Fondjo E, Songmi Feuze S, Tamokou JDD, Tsopmo A, Doungmo G, Friedrich Wilhelm PS, Feugap Tsamo DL, Lenta Ndjakou B, Kuiate JR. Synthesis, characterization, and antibacterial activity studies of two Co(II) complexes with 2-[(E)-(3-acetyl-4-hydroxyphenyl)diazenyl]-4-(2-hydroxyphenyl)thiophene-3-carboxylic acid as a ligand. BMC Chem 2024; 18:75. [PMID: 38627757 PMCID: PMC11022391 DOI: 10.1186/s13065-024-01179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Two new Cobalt(II) complexes 12 and 13 have been synthesized from 2-[(E)-(3-acetyl-4-hydroxyphenyl)diazenyl]-4-(2-hydroxyphenyl)thiophene-3-carboxylic acid (11) as a novel ligand. These three new compounds were characterized on the basis of their powder X-Ray Diffraction, UV-Vis, IR, NMR, elemental analysis and MS spectral data. DFT/B3LYP mode of calculations were carried out to determine some theorical parameters of the molecular structure of the ligand. The purity of the azoic ligand and the metal complexes were ascertained by TLC and melting points. The analysis of the IR spectra of the polyfunctionalized azo compound 11 and its metal complexes 12 and 13, reveals that the coordination patterns of the ligand are hexadentate and tetradentate respectively. Based on the UV-Vis electronic spectral data and relevant literature reports, the ligand and derived complexes were assigned the E (trans) isomer form. Likewise, octahedral and square-planar geometries were respectively assigned to the cobalt(II) complexes. The broth microdilution method was used for antibacterial assays through the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The ligand 11 displayed moderate antibacterial activity (MIC = 32-128 μg/mL) against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Pseudomonas aeruginosa and Klebsiella pneumoniae 22. The octahedral cobalt(II) complex 12 showed moderate activity against Pseudomonas aeruginosa (MIC = 128 μg/mL) and Klebsiella pneumoniae 22 (MIC = 64 μg/mL) and none against Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, whereas the square-planar complex 13 displayed moderate activity only on Klebsiella pneumoniae 22 (MIC = 64 μg/mL).
Collapse
Affiliation(s)
- Emmanuel Sopbué Fondjo
- Laboratory of Applied Synthetic Organic Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Republic of Cameroon.
| | - Sorelle Songmi Feuze
- Laboratory of Applied Synthetic Organic Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Republic of Cameroon
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 067, Dschang, Republic of Cameroon
| | - Apollinaire Tsopmo
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Giscard Doungmo
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Peter Simon Friedrich Wilhelm
- Polymer Chemistry Laboratory, Faculty of Live Sciences, Rhine-Waal University of Applied Sciences, Campus Kleve, Marie-Curie Strasse 1, 47533, Kleve, Germany
| | - Donald Léonel Feugap Tsamo
- Laboratory of Applied Synthetic Organic Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Republic of Cameroon
| | - Bruno Lenta Ndjakou
- Higher Teacher's Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon
| | - Jules Roger Kuiate
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 067, Dschang, Republic of Cameroon
| |
Collapse
|
4
|
Pyszka I, Jędrzejewska B. Design of Dyes Based on the Quinoline or Quinoxaline Skeleton towards Visible Light Photoinitiators. Int J Mol Sci 2024; 25:4289. [PMID: 38673872 PMCID: PMC11050332 DOI: 10.3390/ijms25084289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Dyes based on quinoline and quinoxaline skeletons were designed for application as visible light photoinitiators. The obtained compounds absorb electromagnetic radiation on the border between ultraviolet and visible light, which allows the use of dental lamps as light sources during the initiation of the photopolymerization reaction. Their another desirable feature is the ability to create a long-lived excited state, which enables the chain reaction to proceed through the mechanism of intermolecular electron transfer. In two-component photoinitiating systems, in the presence of an electron donor or a hydrogen atom donor, the synthesized compounds show excellent abilities to photoinitiate the polymerization of acrylates. In control tests, the efficiency of photopolymerization using modified quinoline and quinoxaline derivatives is comparable to that obtained using a typical, commercial photoinitiator for dentistry, camphorquinone. Moreover, the use of the tested compounds requires a small amount of photoinitiator (only 0.04% by weight) to initiate the reaction. The research also showed a significant acceleration of the photopolymerization process and shortening of the reaction time. In practice, this means that the new two-component initiating systems can be used in much lower concentrations without slowing down the speed of obtaining polymer materials. It is worth emphasizing that these two features of the new initiating system allow for cost reduction by reducing financial outlays on both materials (photoinitiators) and electricity.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | | |
Collapse
|
5
|
Sailer J, Sharland JC, Bacsa J, Harris CF, Berry JF, Musaev DG, Davies HML. Diruthenium Tetracarboxylate-Catalyzed Enantioselective Cyclopropanation with Aryldiazoacetates. Organometallics 2023; 42:2122-2133. [PMID: 37592951 PMCID: PMC10428512 DOI: 10.1021/acs.organomet.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/19/2023]
Abstract
A series of chiral bowl-shaped diruthenium(II,III) tetracarboxylate catalysts were prepared and evaluated in asymmetric cyclopropanations with donor/acceptor carbenes derived from aryldiazoacetates. The diruthenium catalysts self-assembled to generate C4-symmetric bowl-shaped structures in an analogous manner to their dirhodium counterparts. The optimum catalyst was found to be Ru2(S-TPPTTL)4·BArF [S-TPPTTL = (S)-2-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate, BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate], which resulted in the cyclopropanation of a range of substrates in up to 94% ee. Synthesis and evaluation of first-row transition-metal congeners [Cu(II/II) and Co(II/II)] invariably resulted in catalysts that afforded little to no asymmetric induction. Computational studies indicate that the carbene complexes of these dicopper and dicobalt complexes, unlike the dirhodium and diruthenium systems, are prone to the loss of carboxylate ligands, which would destroy the bowl-shaped structure critical for asymmetric induction.
Collapse
Affiliation(s)
- Joshua
K. Sailer
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jack C. Sharland
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Caleb F. Harris
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Center for Scientific Computation, Emory University, 1521
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Nnabuike GG, Salunke-Gawali S, Patil AS, Butcher RJ, Obaleye JA, Ashtekar H, Prakash B. Cobalt(II) complexes containing mefenamic acid with imidazole and pyridine based auxiliary ligands: Synthesis, structural investigation and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Li YX, Li J, Zeng HB, Zhang XJ, Cosnier S, Shan D. Artificial Light-Harvesting System Based on Zinc Porphyrin and Benzimidazole: Construction, Resonance Energy Transfer, and Amplification Strategy for Electrochemiluminescence. Anal Chem 2023; 95:3493-3498. [PMID: 36734630 DOI: 10.1021/acs.analchem.2c05559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Constructing robust and efficient luminophores is of significant importance in the development of electrochemiluminescence (ECL) amplification strategies. Inspired by the resonance energy transfer in natural light-harvesting systems, we propose a novel ECL amplification system based on ECL resonance energy transfer (ECL-RET), which integrates two luminophores, benzimidazole (BIM) and zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP), into one framework. Through disassembling and reconstruction processes, numerous BIM surround ZnTCPP in the constructed ZIF-9-ZnTCPP. Combined with the overlapped spectra between the emission of BIM and the absorption of ZnTCPP, the energy of multiple BIM (donor) can be concentrated to a single ZnTCPP (acceptor) to amplify the ECL emission of the acceptor. This work provides a convenient way to design an efficient ECL-RET system, which initiates a brand-new chapter in the development of ECL amplification strategies.
Collapse
Affiliation(s)
- Yi-Xuan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Junji Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Hai-Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, P R China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000Grenoble, France
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| |
Collapse
|
8
|
Li Y, Li J, Zhu D, Wang J, Shu G, Li J, Zhang S, Zhang X, Cosnier S, Zeng H, Shan D. 2D Zn-Porphyrin-Based Co(II)-MOF with 2-Methylimidazole Sitting Axially on the Paddle-Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2209743. [PMID: 36247688 PMCID: PMC9539398 DOI: 10.1002/adfm.202209743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Indexed: 05/04/2023]
Abstract
High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin-based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co2(MeIm)] (1), is successfully self-assembled from the zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2-methylimidazole (MeIm) by a facile one-pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle-wheel [Co2(-CO2)4] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co2(-CO2)4] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS-CoV-2 with an extremely low limit of detection (≈30 aM).
Collapse
Affiliation(s)
- Yi‐Xuan Li
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Jing Li
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Dunru Zhu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Ju‐Zheng Wang
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Guo‐Fang Shu
- Department of Clinical LaboratorySchool of MedicineZhongda HospitalSoutheast UniversityNanjing210009P. R. China
| | - Junji Li
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Sheng‐Li Zhang
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Xue‐Ji Zhang
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
- Department of Analytical Chemistry, School of Biomedical EngineeringHealth Science CentreShenzhen UniversityShenzhen518060P. R. China
| | - Serge Cosnier
- Department of Molecular ChemistryUniversity of Grenoble Alpes‐CNRSDCM UMR 5250GrenobleF‐38000France
| | - Hai‐Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and DevicesSchool of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| |
Collapse
|
9
|
Mubarak A, Abu Ali H, Metani M. Two novel Cu (II) levofloxacin complexes with different bioactive nitrogen‐based ligands; single‐crystal X‐ray and various biological activities determinations. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Asem Mubarak
- Department of Chemistry Birzeit University Birzeit Palestine
| | - Hijazi Abu Ali
- Department of Chemistry Birzeit University Birzeit Palestine
| | - Munther Metani
- Department of Biology and Biochemistry Birzeit University Birzeit Palestine
| |
Collapse
|
10
|
Talebi S, Abedi A, Amani V. Cobalt(II) complexes with small variations in the heterocycle ligand, crystal structure and DFT calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Hujon F, Lyngdoh RHD, Schaefer HF, King RB. Binuclear Cobalt Paddlewheel-Type Complexes: Relating Metal-Metal Bond Lengths to Formal Bond Orders. Inorg Chem 2021; 60:584-596. [PMID: 33356179 DOI: 10.1021/acs.inorgchem.0c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paddlewheel-type complexes are prominent among experimentally known binuclear cobalt complexes and incorporate substituted formamidinate, guanidinate, and carboxylate ligands in digonal, trigonal, and tetragonal arrays around the bimetallic core. Such complexes are modeled here by density functional theory using unsubstituted ligands, extending the whole set to incorporate a variety of metal oxidation states and spin multiplicities. The DFT results for ground state cobalt-cobalt bond lengths and ground state spin multiplicity of the model complexes are often quite close to the experimental results for the corresponding substituted complexes. The three series of complexes often exhibit parallel trends with regard to effects of change in the metal oxidation state and spin multiplicity. The formamidinate and guanidinate series show marked resemblances. The lowered symmetry in many model trigonal complexes implies that such deviations in the experimentally known congeners arise from the inherent electronic structure. For ground state species, the DFT results provide Co-Co bond orders (BOs) from MO occupancy considerations. Further, using a revised electron bookkeeping method, Co-Co formal bond order (fBO) values from 0.0 to 2.0 are assigned to all of the 85 complexes studied. The computed Co-Co bond lengths fall into distinct ranges according to the formal bond order values (from 0.5 to 2).
Collapse
Affiliation(s)
- Fitzerald Hujon
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R H Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.,Centre for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Centre for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R Bruce King
- Centre for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Synthesis, single crystal X-ray, DFT and HSA of N-donor stabilized complexes of cobalt(II) diphenyldithiophosphate: An experimental and theoretical approach. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Eni DB, Yufanyi DM, Nono JH, Tabong CD, Agwara MO. Synthesis, characterization and thermal properties of 1,10-phenanthroline mixed-ligand complexes of cobalt(II) and copper(II): metal-mediated transformations of the dicyanamide ion. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Swiatkowski M, Sieranski T, Bogdan M, Kruszynski R. Structural Insights into Influence of Isomerism on Properties of Open Shell Cobalt Coordination System. Molecules 2019; 24:molecules24183357. [PMID: 31527386 PMCID: PMC6767358 DOI: 10.3390/molecules24183357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/18/2022] Open
Abstract
The two coordination compounds of cobalt were designed and synthesized. The substrates were carefully selected to allow gentle tuning of the molecular structure of the designed compounds. The crystal, molecular and supramolecular structure of studied compounds has been determined and discussed. The spectroscopic and thermal properties of designed coordination compounds have been studied and their application as precursors for the synthesis of cobalt oxide nanoparticles has been demonstrated. It was proven that not only are parameters of conversion of the precursor to nanoparticles important, but also small changes in molecular structure can considerably affect the size of formed particles. For unambiguous determination of the influence of compounds structure on their UV-Vis radiation absorption, density functional theory and time-dependent density functions theory calculations have been performed. The complexity of the correct ab-initio reflection of the open shell molecular system was outlined and discussed. The results obtained from density functional theory (DFT) calculations have been also employed for discussion of the bonding properties.
Collapse
Affiliation(s)
- Marcin Swiatkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Tomasz Sieranski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Marta Bogdan
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
15
|
Pakula RJ, Martinez AM, Noten EA, Harris CF, Berry JF. New chromium, molybdenum, and cobalt complexes of the chelating esp ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Raymoni G, Abu Ali H. Synthesis, Structures and Various Biological Applications of New Zn(II) Complexes Having Different Coordination Modes Controlled by the Drug Furosemide in Presence of Bioactive Nitrogen Based Ligands. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ghana Raymoni
- Department of Chemistry; Birzeit University; West Bank Palestine
| | - Hijazi Abu Ali
- Department of Chemistry; Birzeit University; West Bank Palestine
| |
Collapse
|
17
|
Pakula RJ, Berry JF. Cobalt complexes of the chelating dicarboxylate ligand "esp": a paddlewheel-type dimer and a heptanuclear coordination cluster. Dalton Trans 2018; 47:13887-13893. [PMID: 30225479 PMCID: PMC6774636 DOI: 10.1039/c8dt03030h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination chemistry of Co(ii) with the chelating dicarboxylate ligand esp (esp = α,α,α',α'-tetramethyl-1,3-benzenedipropionate) is explored. We report here the bimetallic paddlewheel-type dimer, Co2(esp)2(EtOH)2 (1), and a bowl-shaped, heptanuclear coordination cluster, Co7(OH)4(Hesp)2(esp)4(MeCN)2·4MeCN (2). Crystal structures of both complexes are reported as well as their magnetic properties, which indicate antiferromagnetic interactions among the Co(ii) ions.
Collapse
Affiliation(s)
- Ryan J Pakula
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | |
Collapse
|
18
|
Shalash AM, Abu Ali HI. Synthesis, crystallographic, spectroscopic studies and biological activity of new cobalt(II) complexes with bioactive mixed sulindac and nitrogen-donor ligands. Chem Cent J 2017; 11:40. [PMID: 29086831 PMCID: PMC5423883 DOI: 10.1186/s13065-017-0268-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Four novel complexes [Co(H2O)4(sul)2] 1, [Co(2-ampy)2(sul)2] 2, [Co(H2O)2(1,10-phen) (sul)2] 3 and [Co(2,9-dimephen)(sul)2] 4 (sul = sulindac, 2-ampy = 2-amino pyridine, 1,10-phen = 1,10-phenanthroline and 2,9-dimeph = 2,9-dimethyl-1,10-phenanthroline) were prepared and characterized by IR, UV-Visible spectroscopy and magnetic properties. The crystal structures of complexes 1 and 4 were determined by single-crystal X-ray diffraction. In-vitro anti-bacterial activity for the prepared complexes against Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus) and Gram-negative (Bordetella, Escherichia coli) bacteria and Yeast species (Saccharomyces and Candida) were performed using agar well-diffusion method. Only complex 4 showed reasonable activity against yeast. All compounds showed more anti-bacterial activity against Gram-positive bacteria than Gram-negative. Graphical abstract This work reports synthesis, crystallographic, spectroscopic studies and biological activity of new cobalt(II) complexes with bioactive mixed sulindac and nitrogen-donor ligands. The crystal structures of complexes 1 and 4 were determined using single-crystal X-ray diffraction. In-vitro anti-bacterial activity of the prepared complexes and their parent ligands were investigated against different Gram-positive and Gram-negative bacteria using agar diffusion method.
Collapse
Affiliation(s)
- Asia M. Shalash
- Department of Chemistry, Birzeit University, P.O. Box 14, West Bank, Palestine
| | - Hijazi I. Abu Ali
- Department of Chemistry, Birzeit University, P.O. Box 14, West Bank, Palestine
| |
Collapse
|