1
|
Liu Z, Meng X, Zhang Z, Liu R, Wang S, Lei JQ. Theoretical Study on Spectrum and Luminescence Mechanism of Cy5.5 and Cy7.5 Dye Based on Density Functional Theory (DFT). J Fluoresc 2023:10.1007/s10895-023-03525-4. [PMID: 38051402 DOI: 10.1007/s10895-023-03525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Cy5.5 and 7.5 are the most commonly used NIR 2-region fluoresceins, which have good luminescence properties and important biomedical tracer applications. In this paper, their molecular non-covalent interactions, UV-Vis absorption spectra, main bond lengths, electrostatic potential distributions, frontier molecular orbitals (HOMO and LUMO) and energy gaps were calculated by density functional theory (DFT). We found that the differences in the luminescence properties and energy gaps of Cy5.5 and Cy7.5 molecules may be caused by the length of the conjugated chains between the two aromatic rings in the molecule. By calculating the relevant molecular characteristics, this paper can provide ideas and theoretical basis for the relevant modification and application, as well as the development of new fluorescent dyes.
Collapse
Affiliation(s)
- Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xv Meng
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Zhengze Zhang
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Runzhang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shutao Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Jun-Qiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China.
| |
Collapse
|
2
|
Virtual screening, pharmacokinetic, and DFT studies of anticancer compounds as potential V600E-BRAF kinase inhibitors. J Taibah Univ Med Sci 2023; 18:933-946. [PMID: 36875340 PMCID: PMC9976450 DOI: 10.1016/j.jtumed.2023.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
Objectives V600E-BRAF kinase is an essential therapeutic target in melanoma and other types of tumors. Because of its resistance to known inhibitors and the adverse effects of some identified inhibitors, investigation of new potent inhibitors is necessary. Methods In the present work, in silico strategies such as molecular docking simulation, pharmacokinetic evaluation, and density functional theory (DFT) computations were used to identify potential V600E-BRAF inhibitors from a set of 72 anticancer compounds in the PubChem database. Results Five top-ranked molecules (12, 15, 30, 31, and 35) with excellent docking scores (MolDock score ≥90 kcal mol-1, Rerank score ≥60 kcal mol-1) were selected. Several potential binding interactions were discovered between the molecules and V600E-BRAF. The formation of H-bonds and hydrophobic interactions with essential residues of V600E-BRAF suggested the high stability of these complexes. The selected compounds had excellent pharmacological properties according to the drug likeness rules (bioavailability) and pharmacokinetic properties. Similarly, the energy for the frontier molecular orbitals, such as the HOMO, LUMO, energy gap, and other reactivity parameters, was computed with DFT. The frontier molecular orbital surfaces and electrostatic potentials were investigated to demonstrate the charge-density distributions potentially associated with anticancer activity. Conclusion The identified compounds were found to be potent hit compounds for V600E-BRAF inhibition with superior pharmacokinetic properties; therefore, they may be promising cancer drug candidates.
Collapse
|
3
|
Muthumanickam S, Ramachandran B, Boomi P, Jeyakanthan J, Prabu HG, Jegatheswaran S, Premkumar K. Combination of bendamustine-azacitidine against Syk target of breast cancer: an in silico study. J Biomol Struct Dyn 2023; 41:13950-13962. [PMID: 37098715 DOI: 10.1080/07391102.2023.2203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/28/2023] [Indexed: 04/27/2023]
Abstract
Breast cancer (BC) is the most serious and second leading cause of death in women worldwide. When breast cancer is diagnosed and treated early, the chance of long-term survival is up to 90%. On the other hand, 90% of BC patient deaths are due to metastasis and a lack of effective early diagnosis. The existing conventional chemotherapy provides negative feedback due to transportation barriers towards the action sites, multidrug resistance, poor bio-availability, non-specific delivery and systemic side effects on the healthy tissue. Syk protein Kinase has been reported in BC, as a tumor modulator, providing a pro-survival signal and also by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration. In the present study, we explored the possibility of targeting BC by attenuating Syk protein Kinase. Hence, we have conjugated the hydrophobic Bendamustine (BEN) and hydrophilic Azacitidine (AZA) anticancer drugs to evaluate their efficacy against BC. The native drugs (BEN and AZA) and designed drug-drug conjugate (BEN-AZA) were docked with Syk protein. Then, the docked complex was performed for Binding Free Energy and Molecular Dynamics Simulations. Furthermore, DFT and ADME properties were carried out. The results revealed that the designed drug-drug conjugate has a better docking score, ΔGbind and admirable stability throughout the simulation when compared with native drugs. In DFT and ADME analyses, the designed drug-drug conjugate has shown good stereo electronic features and pharmaceutical relevant parameters than that of native drugs. The overall results suggested that the designed drug-drug conjugate may be a suitable candidate for BC treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
4
|
Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl)piperazin-1-ium 4-(3-methoxyphenyl)piperazine-1-carboxylate monohydrate. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Studies on New Imidazo[2,1-b][1,3,4]thiadiazole Derivatives: Molecular Structure, Quantum Chemical Computational, and In silico Study of Inhibitory Activity Against Pim-1 Protein by using Molecular Modelling Methods and ADMET Profiling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Spectroscopic, computational DFT, in vitro, and molecular docking investigations of newly isolated 2, 3, 9, and 10-tetrahydroacridin-3-one from the methanolic extract of nilavembu kudineer chooranam. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Kathavarayan A, Ramasamy V, Rajamanickam R, Subramaniyan G. Synthesis, Crystal Structure, Hirshfeld Surface and Docking Studies of 2‐(methacryloyloxy)ethyl‐6‐amino‐5‐cyano‐2‐methyl‐4‐(thiophen‐2‐yl)‐4
H
‐pyran‐3‐carboxylate. ChemistrySelect 2022. [DOI: 10.1002/slct.202203680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arulvani Kathavarayan
- Department of Chemistry PGP College of Arts and Science (Affiliated to Periyar University-Salem) Namakkal 637 207 Tamil Nadu India
| | - Venkateswaramoorthi Ramasamy
- Department of Chemistry PGP College of Arts and Science (Affiliated to Periyar University-Salem) Namakkal 637 207 Tamil Nadu India
| | - Ramachandran Rajamanickam
- Department of Chemistry PGP College of Arts and Science (Affiliated to Periyar University-Salem) Namakkal 637 207 Tamil Nadu India
| | - Gunavathi Subramaniyan
- Department of Chemistry PGP College of Arts and Science (Affiliated to Periyar University-Salem) Namakkal 637 207 Tamil Nadu India
| |
Collapse
|
8
|
Sahaya Infant Lasalle B, Manikandan A, Senthil Pandian M, Ramasamy P. Theoretical and Experimental Investigation on 1,2,3‐Benzotriazole 4‐Hydroxybenzoic Acid (BTHBA) Single Crystals for Third‐Order Nonlinear Optical (NLO) Applications. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Sahaya Infant Lasalle
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - A. Manikandan
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - Muthu Senthil Pandian
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - P. Ramasamy
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| |
Collapse
|
9
|
Theoretical Study on Spectrum and Luminescence Mechanism of Indocyanine Green Dye Based on Density Functional Theory (DFT). J CHEM-NY 2022. [DOI: 10.1155/2022/4321595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Indocyanine green is a great near-infrared fluorescence with good luminescent properties and important medical applications. In this paper, the theoretical spectrum and orbital model of its molecular level are established. The two most probable conformations were studied, and their energies, vibrational spectra, UV-Vis absorption spectra, frontier molecular orbitals (HOMO and LUMO), and energy gaps were obtained by density functional theory (DFT) calculations, respectively. This provides a theoretical and design basis for the development of novel dyes similar to indocyanine green dyes and a reference case for improved application methods and synthetic predesign of novel fluorescent dyes.
Collapse
|
10
|
Saeed A, Ejaz SA, Khalid A, Channar PA, Aziz M, Abbas Q, Wani TA, Alsaif NA, Alanazi MM, Al-Hossaini AM, Altwaijry N, Zargar S, Elhadi M, Hökelek T. Acetophenone-Based 3,4-Dihydropyrimidine-2(1H)-Thione as Potential Inhibitor of Tyrosinase and Ribonucleotide Reductase: Facile Synthesis, Crystal Structure, In-Vitro and In-Silico Investigations. Int J Mol Sci 2022; 23:13164. [PMID: 36361953 PMCID: PMC9658835 DOI: 10.3390/ijms232113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/09/2023] Open
Abstract
The acetophenone-based 3,4-dihydropyrimidine-2(1H)-thione was synthesized by the reaction of 4-methylpent-3-en-2-one (1), 4-acetyl aniline (2) and potassium thiocyanate. The spectroscopic analysis including: FTIR, 1H-NMR, and single crystal analysis proved the structure of synthesized compound (4), with the six-membered nonplanar ring in envelope conformation. In crystal structure, the intermolecular N-H ⋯ S and C-H ⋯ O hydrogen bonds link the molecule in a two-dimensional manner which is parallel to (010) the plane enclosing R22 (8) and R22 (10) ring motifs. After that, the Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis, the most substantial contributions to the crystal packing are from H ⋯ H (59.5%), H ⋯ S/S ⋯ H (16.1%), and H ⋯ C/C ⋯ H (13.1%) interactions. The electronic properties and stability of the compound were investigated through density functional theory (DFT) studies using B3LYP functional and 6-31G* as a basis set. The compound 4 displayed the high chemical reactivity with chemical softness of 2.48. In comparison to the already reported known tyrosinase inhibitor, the newly synthesized derivatives exhibited almost seven-fold better inhibition of tyrosinase (IC50 = 1.97 μM), which was further supported by molecular docking studies. The compound 4 inside the active pocket of ribonucleotide reductase (RNR) exhibited a binding energy of -19.68 kJ/mol, and with mammalian deoxy ribonucleic acid (DNA) it acts as an effective DNA groove binder with a binding energy of -21.32 kJ/mol. The results suggested further exploration of this compound at molecular level to synthesize more potential leads for the treatment of cancer.
Collapse
Affiliation(s)
- Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aqsa Khalid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of of Information Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Zallaq 32038, Bahrain
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju 314-701, Chungnam, Korea
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Muawya Elhadi
- Department of Physics, Faculty of Science and Humanities, Ed Dawadmi, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
11
|
Umabharathi P, Karpagam S. Thiazole-Formulated Azomethine Compound for Three-Way Detection of Mercury Ions in Aqueous Media and Application in Living Cells. ACS OMEGA 2022; 7:24638-24645. [PMID: 35874226 PMCID: PMC9301703 DOI: 10.1021/acsomega.2c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Heavy metal ions are extremely poisonous and cause long-term harm to living organisms. Among these ions, mercury is the most toxic metal and has no notorious purpose in the human body. In this regard, an elegant azomethine thiazole compound AM1 was synthesized, and it was found to be highly sensitive to three-way detection of mercury ions with detection limits of 0.1126 × 10-9 M (FL) and 0.64 × 10-6 M (UV-vis). AM1 highlighted the capability to detect mercury ions through the colorimetric method, the fluorometric method, and via the naked eye in three-way detection. In addition, the structure of AM1 was confirmed by single-crystal X-ray diffraction studies and crystallized in a monoclinic crystal system with a P21/c space group, and it shows numerous noncovalent interactions in the crystal packing. The high sensitivity of AM1 to Hg2+ ions was imputed to the quenching mechanism and was estimated by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H-NMR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-vis) absorbance, fluorescence (FL) emission, Job's plot, B-H plot, and DFT calculation. Naked eye color change of AM1 solution to yellow and turn-off FL by the addition of mercury ion is due to complex formation. In addition to mercury ions, the sensor displayed a new absorption peak at around 240 nm. Furthermore, an AM1-coated test strip is used as the solid support sensor, and real-time detection of Hg2+ ions in the HeLa cell line by fluorescence microscopy is performed.
Collapse
|
12
|
Martins GR, Schwalm CS, Carvalho CTD, Pinto LMDC. Co(II), Ni(II), and Zn(II) complexes based on new hybrid imine-pyrazole ligands: structural, spectroscopic, and electronic properties. J Mol Model 2022; 28:162. [PMID: 35597858 DOI: 10.1007/s00894-022-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The present work reports the theoretical investigation of Co(II), Ni(II), and Zn(II) complexes containing Schiff bases (used as ligands) derived from the reaction of 2-hydroxy-1-naphthaldehyde with N-(2-aminoethyl) pyrazoles. The spectral analyses were carried out using infrared, Raman, and UV-Vis spectroscopy. Vibrational analyses were performed in order to investigate the mechanisms involving metal-ligand and intra-ligand vibrations and indicated the possibility of charge transfer related to the transitions n[Formula: see text]* and [Formula: see text]*. Structure optimizations and normal coordinate force field calculations were performed via the density functional theory (DFT) method at the HSE06/6-311G(d,p)/LanL2DZ level. A thorough analysis was also conducted regarding the nonlinear optical (NLO) properties and the natural bond orbital (NBO) of the complexes. The results show that these complexes have prospective application as materials for NLO. Furthermore, the NBO analysis confirms the coordination between the lone pair (LP) electrons of the donor atoms (O and N) and the metal acceptors. Finally, studies were conducted regarding the electronic properties of the complexes; among the properties investigated included the frontier molecular orbitals (FMO) and the molecular electrostatic potential (MEP), allowing to determine the energy gap and charge distribution.
Collapse
Affiliation(s)
- Gabriel Rodrigues Martins
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande-MS, 79074-460, Brazil
| | - Cristiane Storck Schwalm
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Dourados-MS, 79804-970, Brazil
| | - Cláudio Teodoro de Carvalho
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Dourados-MS, 79804-970, Brazil
| | | |
Collapse
|
13
|
Study of the molecular interaction between hormone and anti-cancer drug using DFT and vibrational spectroscopic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Experimental and theoretical Fourier transform infrared and Raman spectroscopy, density functional theory, antibacterial activity and molecular docking studies on 1-(4-methoxyphenyl)-1H-imidazole. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chipanina NN, Oznobikhina LP, Sigalov MV, Serykh VY, Shainyan BA. Electron and Proton Donating Ability of the Pyrrolyl and Diazolyl Derivatives of Cycloalkanones. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Shanmugapriya N, Balachandran V, Revathi B, Narayana B, Salian VV, Vanasundari K, Sivakumar C. Quantum chemical calculation, performance of selective antimicrobial activity using molecular docking analysis, RDG and experimental (FT-IR, FT-Raman) investigation of 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro- 1H- pyrazol-1-yl]-4-oxo-1, 3- thiazol-5(4H)-ylidene} methyl] benzonitrile. Heliyon 2021; 7:e07634. [PMID: 34381897 PMCID: PMC8339246 DOI: 10.1016/j.heliyon.2021.e07634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
The research received a great deal of worldwide attention due to the nature of interpretation before the experimental process. Based on the systematic process the structure of thiazole -pyrazole compound 4-[{2-[3-(4-chlorophenyl)-5-(4-propan-2-yl) phenyl)-4, 5-dihydro- 1H- pyrazol-1-yl]-4-oxo-1, 3- thiazol-5(4H)-ylidene} methyl] benzonitrile [CPTBN] was investigated. In the first level, the spectral statistics on experimental FT-IR and FT- Raman was reported. At the next level, geometrical parameters was theoretically acquired from density functional theory (DFT) using B3LPY/6-31G and 6-311G basis set. The computed Wavenumber were collected and compared with the experimental data. The vibrational modes were interpreted in terms of potential energy distribution (PED) results. The FMO, MEP, and NBO analysis further validated the electrophilic and nucleophilic interaction in the molecular systems. Two grams-positive bacteria: staphylococcus aureus, Bacillus subtilis and two gram-negative bacteria: Esherichia coli, Pseudomonas aeruginosa was performed for antibacterial activity. Two fungal strain Candida albicans and Aspergillus Niger was carried out against a ligand using anti-fungal activity. The molecular docking analysis explores the antimicrobial and selective potential inhibitory nature of the binding molecule. Besides, RDG and ELF analysis were also performed to show the nature of interactions between the molecule.
Collapse
Affiliation(s)
- N. Shanmugapriya
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - V. Balachandran
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - B. Revathi
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - B. Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
| | - Vinutha V. Salian
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
| | - K. Vanasundari
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| | - C. Sivakumar
- Centre for Research, Department of Physics, Arignar Anna Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli, Musiri, 621 211, India
| |
Collapse
|
17
|
Upadhyay A, Purohit AK, Mahakur G, Dash S, Kar PK. Verification of corrosion inhibition of Mild steel by some 4-Aminoantipyrine-based Schiff bases – Impact of adsorbate substituent and cross-conjugation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Kadela-Tomanek M, Jastrzębska M, Marciniec K, Chrobak E, Bębenek E, Boryczka S. Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone. Pharmaceutics 2021; 13:pharmaceutics13060781. [PMID: 34071116 PMCID: PMC8224687 DOI: 10.3390/pharmaceutics13060781] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
A key parameter in the design of new active compounds is lipophilicity, which influences the solubility and permeability through membranes. Lipophilicity affects the pharmacodynamic and toxicological profiles of compounds. These parameters can be determined experimentally or by using different calculation methods. The aim of the research was to determine the lipophilicity of betulin triazole derivatives with attached 1,4-quinone using thin layer chromatography in a reverse phase system and a computer program to calculate its theoretical model. The physiochemical and pharmacokinetic properties were also determined by computer programs. For all obtained parameters, the similarity analysis and multilinear regression were determined. The analyses showed that there is a relationship between structure and properties under study. The molecular docking study showed that betulin triazole derivatives with attached 1,4-quinone could inhibit selected SARS-CoV-2 proteins. The MLR regression showed that there is a correlation between affinity scoring values (ΔG) and the physicochemical properties of the tested compounds.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
- Correspondence: ; Tel.: +48-32-3641666
| | - Maria Jastrzębska
- Silesian Center for Education and Interdisciplinary Research, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| |
Collapse
|
19
|
Spectroscopic Investigations, Computational Analysis and Molecular Docking to SAR-Cov-2 Targets Studies of 5,8-Quinolinedione Attached to Betulin Derivatives. CRYSTALS 2021. [DOI: 10.3390/cryst11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 5,8-quinolinedione-betulin hybrids were investigated using spectroscopic methods as well as a variety of quantum chemical calculations in order to characterize their molecular structure. We used FT-IR and NMR spectroscopy supplemented by the density functional theory (DFT) calculations, molecular electrostatic potential (MEP) and molecular orbital (HOMO, LUMO) analyses. The experimental and calculated FT-IR spectra showed a good correlation for all compounds. Analysis of carbonyl band showed that the compounds are the 7-mono substituted. The calculated 1H NMR and 13C NMR spectra of hybrids reproduced well the experimental ones. Identification of C-6 and C-7 carbon atoms of 5,8-quinolinedione revealed the position of betulin moiety at the C-7 of 5,8-quinolinedione. Molecular electrostatic potential maps of hybrids allowed to recognize the electrophilic and nucleophilic regions within the molecules. The molecular docking study was used to examine the interaction between the 5,8-quinolinedione-betulin hybrids and the SARS-CoV-2 protein, like: Mpro and PLpro. The obtained results showed that compounds with the highest Dock Score are good anti-SARS-CoV-2 potential drug candidates.
Collapse
|
20
|
XRD, FT–IR and UV characterization, hirshfeld surface analysis and local-global chemical descriptor studies of (E)-2-((3-fluorophenylimino)methyl)-3-methoxyphenol (1) and (E)-2-((2-fluorophenylimino)methyl)-3-methoxyphenol (2). J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|