1
|
Sambamoorthy S, Thamaraichelvan G, Karikalan A, Kumar SS. Heterocyclic fluorescent Schiff base chemosensors for the detection of Fe(III) and Cu(II) ions. LUMINESCENCE 2024; 39:e4739. [PMID: 38685743 DOI: 10.1002/bio.4739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Two new Schiff bases were synthesized from 1-(2,4-dihydroxyphenyl)ethanone and pyridine derivatives. Both compounds were characterized using infrared, UV-Vis., 1H NMR, 13C NMR and mass spectral studies. Density functional theory (DFT) calculations were performed for both the Schiff bases with 6-31G(d, p) as the basis set. Vibrational frequencies calculated using the theoretical method were in good agreement with the experimental values. Both the Schiff bases were highly fluorescent in nature. The cation-recognizing profile of the compounds was investigated in aqueous methanol medium. The Schiff base 4-(1-(pyridin-4-ylimino)ethyl)benzene-1,3-diol (PYEB) was found to interact with Fe(III) and Cu(II) ions, whereas the Schiff base 4,4'-((pyridine-2,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(benzene-1,3-diol) (PDEB) was found to detect Cu(II) ions. The mechanism of recognition was established as combined excited state intramolecular proton transfer (ESIPT)-chelation-enhanced fluorescence (CHEF) effect and chelation-enhanced quenching (CHEQ) process for the detection of Fe(III) and Cu(II) ions, respectively. The stability constant of the metal complexes formed during the sensing process was determined. The limit of detection for Fe(III) and Cu(II) ions with respect to Schiff base PYEB was found to be 1.64 × 10-6 and 2.16 × 10-7 M, respectively. With respect to Schiff base PDEB, the limit of detection for Cu(II) ion was found to be 4.54 × 10-4 M. The Cu(II) ion sensing property of the Schiff base PDEB was applied in bioimaging studies for the detection of HeLa cells.
Collapse
Affiliation(s)
- Santhi Sambamoorthy
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Geetha Thamaraichelvan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Abinaya Karikalan
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Saranya Srinivasa Kumar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
2
|
Alharbi A, Alsoliemy A, Alzahrani SO, Alkhamis K, Almehmadi SJ, Khalifa ME, Zaky R, El-Metwaly NM. Green synthesis approach for new Schiff's-base complexes; theoretical and spectral based characterization with in-vitro and in-silico screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Alharbi A, Alzahrani S, Alkhatib F, Abu Al-Ola K, Abdulaziz Alfi A, Zaky R, El-Metwaly NM. Studies on new Schiff base complexes synthesized from d10 metal ions: Spectral, conductometric measurements, DFT and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Munshi AM, Bayazeed AA, Abualnaja M, Morad M, Alzahrani S, Alkhatib F, Shah R, Zaky R, El-Metwaly NM. Ball-milling synthesis technique for Cu(II)-Schiff base complexes with variable anions; characterization, potentiometric study and in-vitro assay confirmed by in-silico method. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Messasma Z, Aggoun D, Houchi S, Ourari A, Ouennoughi Y, Keffous F, Mahdadi R. Biological activities, DFT calculations and docking of imines tetradentates ligands, derived from salicylaldehydic compounds as metallo-beta-lactamase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Shah R, Katouah H, Sedayo AA, Abualnaja M, Aljohani MM, Saad F, Zaky R, El-Metwaly NM. Practical and computational studies on novel Schiff base complexes derived from green synthesis approach: Conductometry as well as in-vitro screening supported by in-silico study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Aggoun D, Fernández-García M, López D, Bouzerafa B, Ouennoughi Y, Setifi F, Ourari A. New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: Synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Zubair M, Sirajuddin M, Ullah K, Haider A, Perveen F, Hussain I, Ali S, Tahir MN. Synthesis, structural peculiarities, theoretical study and biological evaluation of newly designed O-Vanillin based azomethines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Houchi S, Mahdadi R, Khenchouche A, Song J, Zhang W, Pang X, Zhang L, Sandalli C, Du G. Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds. Microb Pathog 2019; 126:56-62. [PMID: 30393116 DOI: 10.1016/j.micpath.2018.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the total phenolic content (TPC), the identification of the common compounds by HPLC-ESI-MS and HPLC-ESI-MS-TOF and the inhibitory effects against class A-type β-lactamase (GES-22 variant, produced recombinantly) in methanolic extracts (MEs) of four Algerian seaweeds [Ulva intestinalis, Codium tomentosum, Dictyota dichotoma and Halopteris scoparia]. The TPC varied among the four species, ranging between 0.93 ± 0.65 and 2.66 ± 1.33 mg GAEs/g DW. C.tomentosum had higher total phenol content than other seaweeds while, all of them inhibited uncompetitively GES-22 activity in a dose-dependent manner. Nitrocefin was used as chromogenic substrate to evaluate the inhibitory effect on GES-22. The methanolic extract of D.dichotoma exhibited significant inhibitory effect on GES-22 (IC50 = 13.01 ± 0.046 μg/mL) more than clavulanate, sulbactam and tazobactam (classical β-lactam inhibitors) (IC50 = 68.38 ± 0.17 μg/mL, 52.68 ± 0.64 μg/mL, and 29.94 ± 0.01 μg/mL, respectively). IC50 of the other ME of U.intestinalis, C.tomentosum, and H.scoparia were 16.87 ± 0.10 μg/mL, 16.54 ± 0.048 μg/mL, and 25.72 ± 0.15 μg/mL, respectively. Except H. scoparia, other three seaweed extracts showed almost two times or more inhibition on GES-22. Furthermore, four common compounds in these MEs were identified, α-linolenic acid (C18:3ω3), linoleic acid (C18:2ω6), oleic acid (C18:1ω9), the eicosanoid precursors ''arachidonic acid'' (C20:4ω6). Baicalein (C15H10O5) was identified in U.intestinalis and D.dichotoma seaweeds. The fact that all seaweed extracts inhibited the GES-22 better than commercial samples makes these seaweeds candidate for discovering new inhibitors against β-lactamases. Besides that, they contain important components with potential health benefits.
Collapse
Affiliation(s)
- Selma Houchi
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria.
| | - Rachid Mahdadi
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria.
| | - Abdelhalim Khenchouche
- Valorization of Natural Biological Resources Laboratory (VNBR Lab), Department of Microbiology, Faculty of Life and Nature Sciences, University of Ferhat Abbas setif-1, Algeria
| | - Junke Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaocong Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cemal Sandalli
- Microbiology and Molecular Biology Research Laboratory, Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|