1
|
Ontiveros-Rosales M, Espinoza-Vázquez A, Rodríguez Gómez F, Valdez-Rodríguez S, Miralrio A, Acosta-Garcia B, Castro M. Imidazolate of 1-butyl-3-ethyl imidazole as corrosion inhibitor on API 5L X52 steel in NaCl saturated with CO2. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Feng L, Zhang S, Hao L, Du H, Pan R, Huang G, Liu H. Cucumber ( Cucumis sativus L.) Leaf Extract as a Green Corrosion Inhibitor for Carbon Steel in Acidic Solution: Electrochemical, Functional and Molecular Analysis. Molecules 2022; 27:3826. [PMID: 35744959 PMCID: PMC9227098 DOI: 10.3390/molecules27123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
An extract of cucumber leaves (ECSL) was prepared as a green corrosion inhibitor for carbon steel. Its carbon steel corrosion inhibition performance against 0.5 mol L-1 H2SO4 was investigated using electrochemical methods and scanning electron microscopy (SEM). Its composition was analyzed by gas chromatography and mass spectroscopy (GC-MS). Quantum chemical calculations and molecular dynamics simulations (MDS) were conducted to elucidate the adsorption mechanism of the inhibitor molecules on the carbon steel surface. The results indicated that the inhibition efficiency increases with its increasing concentration. The extract acted as a mixed type corrosion inhibitor, and its inhibition properties were ascribed to the geometric coverage effect induced by its adsorption on the metal surface in accordance with Langmuir's law. The active components in the extract were identified as mainly organic compounds with functional groups such as aromatic moieties and heteroatoms. The inhibition activities of ECSL are delivered through the ability of the active components to adsorb on the metal surface through their functional groups to form a protective layer which hinders the contact of aggressive substances with carbon steel and thus suppresses its corrosion. This research provides an important reference for the design of green corrosion inhibitors based on plant waste materials.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Shanshan Zhang
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Long Hao
- CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Hongchen Du
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Rongkai Pan
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Guofu Huang
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| | - Haijian Liu
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China; (S.Z.); (H.D.); (R.P.); (G.H.); (H.L.)
| |
Collapse
|
3
|
Beltran-Perez C, Serrano AAA, Solís-Rosas G, Martínez-Jiménez A, Orozco-Cruz R, Espinoza-Vázquez A, Miralrio A. A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine. Int J Mol Sci 2022; 23:ijms23095086. [PMID: 35563474 PMCID: PMC9099790 DOI: 10.3390/ijms23095086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
A study of 250 commercial drugs to act as corrosion inhibitors on steel has been developed by applying the quantitative structure-activity relationship (QSAR) paradigm. Hard-soft acid-base (HSAB) descriptors were used to establish a mathematical model to predict the corrosion inhibition efficiency (IE%) of several commercial drugs on steel surfaces. These descriptors were calculated through third-order density-functional tight binding (DFTB) methods. The mathematical modeling was carried out through autoregressive with exogenous inputs (ARX) framework and tested by fivefold cross-validation. Another set of drugs was used as an external validation, obtaining SD, RMSE, and MSE, obtaining 6.76%, 3.89%, 7.03%, and 49.47%, respectively. With a predicted value of IE% = 87.51%, lidocaine was selected to perform a final comparison with experimental results. By the first time, this drug obtained a maximum IE%, determined experimentally by electrochemical impedance spectroscopy measurements at 100 ppm concentration, of about 92.5%, which stands within limits of 1 SD from the predicted ARX model value. From the qualitative perspective, several potential trends have emerged from the estimated values. Among them, macrolides, alkaloids from Rauwolfia species, cephalosporin, and rifamycin antibiotics are expected to exhibit high IE% on steel surfaces. Additionally, IE% increases as the energy of HOMO decreases. The highest efficiency is obtained in case of the molecules with the highest ω and ΔN values. The most efficient drugs are found with pKa ranging from 1.70 to 9.46. The drugs recurrently exhibit aromatic rings, carbonyl, and hydroxyl groups with the highest IE% values.
Collapse
Affiliation(s)
- Carlos Beltran-Perez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.B.-P.); (A.A.A.S.); (G.S.-R.)
| | - Andrés A. A. Serrano
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.B.-P.); (A.A.A.S.); (G.S.-R.)
| | - Gilberto Solís-Rosas
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.B.-P.); (A.A.A.S.); (G.S.-R.)
| | - Anatolio Martínez-Jiménez
- Departamento de Ciencias Básicas, División de CBI (Ciencias Básicas e Ingeniería), Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Área de Física Atómica Molecular Aplicada, San Pablo 180, Ciudad de México 02200, Mexico;
| | - Ricardo Orozco-Cruz
- Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Boca del Río 94292, Mexico;
| | - Araceli Espinoza-Vázquez
- Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Boca del Río 94292, Mexico;
- Correspondence: (A.E.-V.); (A.M.)
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (C.B.-P.); (A.A.A.S.); (G.S.-R.)
- Correspondence: (A.E.-V.); (A.M.)
| |
Collapse
|
4
|
4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO 2 in AISI 1018 Steel: Experimental and Theoretical Study. Int J Mol Sci 2022; 23:ijms23063130. [PMID: 35328550 PMCID: PMC8948901 DOI: 10.3390/ijms23063130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
The corrosion inhibition of 5-O-β-D-glucopyranosyl-7-methoxy-3′,4′-dihydroxy-4-phenylcoumarin (4-PC) in AISI 1018 steel immersed in 3% NaCl + CO2 was studied by electrochemical impedance spectroscopy (EIS). The results showed that, at just 10 ppm, 4-PC exerted protection against corrosion with ղ = 90% and 97% at 100 rpm. At static conditions, the polarization curves indicated that, at 5 ppm, the inhibitor presented anodic behavior, while at 10 and 50 ppm, there was a cathodic-type inhibitor. The inhibitor adsorption was demonstrated to be chemisorption, according to the Langmuir isotherm for 100 and 500 rpm. By means of SEM–EDS, the corrosion inhibition was demonstrated, as well as the fact that the organic compound was effective for up to 72 h of immersion. At static conditions, dispersion-corrected density functional theory results reveal that the chemical bonds established by the phenyl group of 4-PC are responsible of the chemisorption on the steel surface. According with Fukui reactivity indices, the molecules adsorbed on the metal surface provide a protective cover against nucleophilic and electrophilic attacks, pointing to the corrosion inhibition properties of 4-PC.
Collapse
|
5
|
Koundal M, Singh A, Sharma C. Study on the effect of imidazolium ionic liquid as a modulator of corrosion inhibition of anionic surfactant sodium dodecyl sulfate (SDS) on mild steel in sodium chloride solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Espinoza Vázquez A, González-Olvera R, Moreno Cerros D, Negrón Silva G, Figueroa I, Rodríguez Gómez F, Castro M, Miralrio A, Huerta L. Inhibition of acid corrosion in API 5L X52 steel with 1,2,3-triazole derivatized from benzyl alcohol: Experimental and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Carranza MSS, Reyes YIA, Gonzales EC, Arcon DP, Franco FC. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel. Heliyon 2021; 7:e07952. [PMID: 34541355 PMCID: PMC8441079 DOI: 10.1016/j.heliyon.2021.e07952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
The corrosion inhibition property of selected small organic compounds was investigated using electrochemical measurements, including potentiodynamic polarization (PDP), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and density functional theory (DFT) calculations. The inhibition efficiency (IE %) of the inhibitor on mild steel (MS) in 1 M HCl was then determined. Results show that the presence of the inhibitors resulted in decreased corrosion current density (Icorr) values and increased polarization resistance (Rp). Furthermore, the use of higher concentrations of inhibitors led to an increased inhibition efficiency. Tafel slopes and shifts in the Ecorr values suggested that the inhibitors tested are mixed-type inhibitors that form a protective layer on the surface of the substrate. Of the organic compound inhibitors tested, the inhibitor 4-ethylpyridine (EP) exhibited the highest Rp values and inhibition efficiency values from the PDP, LPR, and EIS analyses, respectively. DFT calculations showed negative adsorption energies and confirmed the chemisorption of the inhibitors allowing for the formation of a hydrophobic protective film against corrosion and correlations between the quantum chemical values and electrochemical data were demonstrated. The results show the influence of the presence of electronegative O, S, and N atoms, as well as the role of aromatic rings in the promotion of surface protection by preventing aggressive ionic species from binding onto MS.
Collapse
Affiliation(s)
| | - Yves Ira A Reyes
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | | | - Danielle P Arcon
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Francisco C Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
8
|
Farag AA, Eid A, Shaban M, Mohamed EA, Raju G. Integrated modeling, surface, electrochemical, and biocidal investigations of novel benzothiazoles as corrosion inhibitors for shale formation well stimulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Lignin-Phenylhydrazone as a Corrosion Inhibitor of API X52 Carbon Steel in 3.5% NaCl and 0.1 mol/L HCl Medium. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Espinoza Vázquez A, Figueroa I, Gómez F, Vásquez A, Mata R, Ángeles Beltrán D, Miralrio A, Castro M. (–) – Epicatechin gallate as a corrosion inhibitor for bronze in a saline medium and theoretical study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
A. El-Monem M, Shaban MM, Migahed MA, Khalil MMH. Synthesis, Characterization, and Computational Chemical Study of Aliphatic Tricationic Surfactants as Corrosion Inhibitors for Metallic Equipment in Oil Fields. ACS OMEGA 2020; 5:26626-26639. [PMID: 33110990 PMCID: PMC7581238 DOI: 10.1021/acsomega.0c03432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Aliphatic tricationic surfactants were prepared by the esterification reaction, followed by a quaternization reaction to protect oil well facilities from corrosion problems. Microelemental analysis and Fourier transform infrared and 1H NMR spectroscopic techniques were performed to explore the obtained motifs. The performance of these amphiphiles as inhibitors for metallic S90 steel corrosion in formation water was investigated through electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy). The results revealed significant inhibition effectiveness improvement with increasing concentrations of these amphiphiles. Its maximum inhibition efficiency reaches 93.07% at 250 ppm for the compound (AED). Potentiodynamic polarization graphs demonstrated that tricationic amphiphiles behave as mixed-type inhibitors. In addition, the adsorption of the tricationic surfactant at the S90 steel surface followed Langmuir isotherm. Atomic force microscopy revealed that a protective layer formed at the surface of S90 steel caused the inhibition of corrosion. During the inhibition procedure of S90 steel corrosion, theoretical research has been performed to validate electrochemical experiments and to clearly demonstrate the mechanism of these amphiphiles. Finally, quantum chemical calculations were calculated to achieve the justification for the obtained empirical results.
Collapse
Affiliation(s)
| | - Mahmoud M. Shaban
- Egyptian
Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | | | - Mostafa M. H. Khalil
- Chemistry
Departments, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| |
Collapse
|
12
|
Plant Extracts as Green Corrosion Inhibitors for Different Metal Surfaces and Corrosive Media: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8080942] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural extracts have been widely used to protect metal materials from corrosion. The efficiency of these extracts as corrosion inhibitors is commonly evaluated through electrochemical tests, which include techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss measurement. The inhibition efficiency of different extract concentrations is a valuable indicator to obtain a clear outlook to choose an extract for a particular purpose. A complementary vision of the effectiveness of green extracts to inhibit the corrosion of metals is obtained by means of surface characterizations; atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy analysis are experimental techniques widely used for this purpose. Moreover, theoretical studies are usually addressed to elucidate the nature of the corrosion inhibitor—metal surface interactions. In addition, calculations have been employed to predict how other organic substances behave on metal surfaces and to provide experimental work with fresh proposals. This work reports a broad overview of the current state of the art research on the study of new extracts as corrosion inhibitors on metal surfaces in corrosive media. Most constituents obtained from plant extracts are adsorbed on the metal, following the Langmuir adsorption model. Electron-rich regions and heteroatoms have been found to be responsible for chemisorption on the metal surface, whereas physisorption is due to the polar regions of the inhibitor molecules. The plant extracts compiled in this work obtained corrosion inhibition efficiencies above 60%, most of them around 80–90%. The effect of concentration, extraction solvent, temperature, and immersion time were studied as well. Additional studies regarding plant extracts as corrosion inhibitors on metals are needed to produce solutions for industrial purposes.
Collapse
|
13
|
Shaban M, Eid A, Farag R, Negm N, Fadda A, Migahed M. Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 carbon steel against oilfield formation water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112817] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wei W, Liu Z, Liang C, Han GC, Han J, Zhang S. Synthesis, characterization and corrosion inhibition behavior of 2-aminofluorene bis-Schiff bases in circulating cooling water. RSC Adv 2020; 10:17816-17828. [PMID: 35515612 PMCID: PMC9053582 DOI: 10.1039/d0ra01903h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/18/2020] [Indexed: 01/29/2023] Open
Abstract
Two new bis-Schiff bases, namely 2-bromoisophthalaldehyde-2-aminofluorene (M1) and glutaraldehyde 2-aminofluorene (M2) were synthesized and were characterized, the potentiodynamic polarization curve confirmed that they were anode type inhibitors.
Collapse
Affiliation(s)
- Wenchang Wei
- College of Chemical and Biological Engineering
- Guilin University of Technology
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- Guilin 541004
- P. R. China
| | - Zheng Liu
- College of Chemical and Biological Engineering
- Guilin University of Technology
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- Guilin 541004
- P. R. China
| | - Chuxin Liang
- College of Chemical and Biological Engineering
- Guilin University of Technology
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- Guilin 541004
- P. R. China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin
- P. R. China
| | - Jiaxing Han
- College of Chemical and Biological Engineering
- Guilin University of Technology
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- Guilin 541004
- P. R. China
| | - Shufen Zhang
- College of Chemical and Biological Engineering
- Guilin University of Technology
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials
- Guilin 541004
- P. R. China
| |
Collapse
|
15
|
Riazaty P, Naderi R, Ramezanzadeh B. Synergistic corrosion inhibition effects of benzimidazole-samarium (III) molecules on the steel corrosion prevention in simulated seawater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|