1
|
Khonina SN, Kazanskiy NL. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1367. [PMID: 40096150 PMCID: PMC11902420 DOI: 10.3390/s25051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| |
Collapse
|
2
|
Pinto de Sousa B, Fateixa S, Trindade T. Surface-Enhanced Raman Scattering Using 2D Materials. Chemistry 2024; 30:e202303658. [PMID: 38530022 DOI: 10.1002/chem.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The use of surface-enhanced Raman scattering (SERS) as a technique for detecting small amounts of (bio)chemical analytes has become increasingly popular in various fields. While gold and silver nanostructures have been extensively studied as SERS substrates, the availability of other types of substrates is currently expanding the applications of this spectroscopic method. Recently, researchers have begun exploring two-dimensional (2D) materials (e. g., graphene-like nanostructures) as substrates for SERS analysis. These materials offer unique optical properties, a well-defined structure, and the ability to modify their surface chemistry. As a contribution to advance this field, this concept article highlights the significance of understanding the chemical mechanism that underlies the experimental Raman spectra of chemisorbed molecules onto 2D materials' surfaces. Therefore, the article discusses recent advancements in fabricating substrates using 2D layered materials and the synergic effects of using their metallic composites for SERS applications. Additionally, it provides a new perspective on using Raman imaging in developing 2D materials as analytical platforms for Raman spectroscopy, an exciting emerging research area with significant potential.
Collapse
Affiliation(s)
- Beatriz Pinto de Sousa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Estrada AC, Daniel-da-Silva AL, Leal C, Monteiro C, Lopes CB, Nogueira HIS, Lopes I, Martins MJ, Martins NCT, Gonçalves NPF, Fateixa S, Trindade T. Colloidal nanomaterials for water quality improvement and monitoring. Front Chem 2022; 10:1011186. [PMID: 36238095 PMCID: PMC9551176 DOI: 10.3389/fchem.2022.1011186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Water is the most important resource for all kind forms of live. It is a vital resource distributed unequally across different regions of the globe, with populations already living with water scarcity, a situation that is spreading due to the impact of climate change. The reversal of this tendency and the mitigation of its disastrous consequences is a global challenge posed to Humanity, with the scientific community assuming a major obligation for providing solutions based on scientific knowledge. This article reviews literature concerning the development of nanomaterials for water purification technologies, including collaborative scientific research carried out in our laboratory (nanoLAB@UA) framed by the general activities carried out at the CICECO-Aveiro Institute of Materials. Our research carried out in this specific context has been mainly focused on the synthesis and surface chemical modification of nanomaterials, typically of a colloidal nature, as well as on the evaluation of the relevant properties that arise from the envisaged applications of the materials. As such, the research reviewed here has been guided along three thematic lines: 1) magnetic nanosorbents for water treatment technologies, namely by using biocomposites and graphite-like nanoplatelets; 2) nanocomposites for photocatalysis (e.g., TiO2/Fe3O4 and POM supported graphene oxide photocatalysts; photoactive membranes) and 3) nanostructured substrates for contaminant detection using surface enhanced Raman scattering (SERS), namely polymers loaded with Ag/Au colloids and magneto-plasmonic nanostructures. This research is motivated by the firm believe that these nanomaterials have potential for contributing to the solution of environmental problems and, conversely, will not be part of the problem. Therefore, assessment of the impact of nanoengineered materials on eco-systems is important and research in this area has also been developed by collaborative projects involving experts in nanotoxicity. The above topics are reviewed here by presenting a brief conceptual framework together with illustrative case studies, in some cases with original research results, mainly focusing on the chemistry of the nanomaterials investigated for target applications. Finally, near-future developments in this research area are put in perspective, forecasting realistic solutions for the application of colloidal nanoparticles in water cleaning technologies.
Collapse
Affiliation(s)
- Ana C. Estrada
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Leal
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Cátia Monteiro
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Helena I. S. Nogueira
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM-Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Maria J. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Natércia C. T. Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno P. F. Gonçalves
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- *Correspondence: Tito Trindade,
| |
Collapse
|
4
|
Shah MA, Pirzada BM, Price G, Shibiru AL, Qurashi A. Applications of nanotechnology in smart textile industry: A critical review. J Adv Res 2022; 38:55-75. [PMID: 35572402 PMCID: PMC9091772 DOI: 10.1016/j.jare.2022.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background In recent years, nanotechnology has been playing an important role in designing smart fabrics. Nanomaterials have been employed to introduce in a sustainable manner, antimicrobial, ultraviolet resistant, electrically conductive, optical, hydrophobic and flame-retardant properties into textiles and garments. Nanomaterial based smart devices are now also being integrated with the textiles so as to perform various functions such as energy harvesting and storage, sensing, drug release and optics. These advancements have found wide applications in the fashion industry and are being developed for wider use in defence, healthcare and on-body energy harnessing applications. Aim of review The objective of this work is to provide an insight into the current trends of using nanotechnology in the modern textile industries and to inspire and anticipate further research in this field. This review provides an overview of the most current advances concerning on-body electronics research and the wonders which could be realized by nanomaterials in modern textiles in terms of total energy reliance on our clothes. Key scientific concepts of review The work underlines the various methods and techniques for the functionalization of nanomaterials and their integration into textiles with an emphasis on cost-effectiveness, comfort, wearability, energy conversion efficiency and eco-sustainability. The most recent trends of developing various nanogenerators, supercapacitors and photoelectronic devices on the fabric are highlighted, with special emphasis on the efficiency and wearability of the textile. The potential nanotoxicity associated with the processed textiles due to the tendency of these nanomaterials to leach into the environment along with possible remediation measures are also discussed. Finally, the future outlook regarding progress in the integration of smart nano-devices on textile fabrics is provided.
Collapse
Affiliation(s)
- Mudasir Akbar Shah
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gareth Price
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abel L. Shibiru
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Li XJ, Li YT, Gu HX, Xue PF, Qin LX, Han S. A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:781-788. [PMID: 35083987 DOI: 10.1039/d1ay01981c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glove-based wearable sensors can offer the potential ability to a fast and on-site environmental threat assessment, which is crucial for timely and informed incident management. In this study, an on-demand surface-enhanced Raman scattering (SERS) array sensor has been patterned on fire-retardant fibre gloves via the screen-printing technique in large batches. The screen-printed ink contains one-pot synthesized silver nanoparticle and molybdenum disulfide nanocomposite (Ag/MoS2), and polyanionic cellulose (PAC) as a new adhesive agent. Rhodamine 6G (R6G) was employed as an initial probe molecule to systematically evaluate the performance of the resulting sensor. The results suggest that the fabricated fire-retardant screen-printed SERS array sensor displays high reproducibility and stability at 250 °C, with the lower detection limit of 10-13 M for R6G. The spot-to-spot SERS signals show that the intensity variation was less than 10%. Besides, the SERS signals can be maintained over 7 weeks. Further investigation was then successfully carried out to detect polycyclic aromatic hydrocarbons (PAHs), which are commonly used as flammable chemicals. In our perception, this wearable fire-retardant screen-printed SERS array sensor would be an ideal candidate for practical on-site environmental emergency monitoring due to its fire-retardant capability and timely measurement on a portable carrier.
Collapse
Affiliation(s)
- Xue-Jian Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Yuan-Ting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Hai-Xin Gu
- Shanghai Fire Research Institute of MEM, 601 Second South Zhongshan Road, Shanghai 200032, P.R. China
| | - Peng-Fei Xue
- DuPont China Holding Co., Ltd., No. 255 Dongyu Road, Shanghai 200124, P. R. China
| | - Li-Xia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
6
|
Mehravani B, Ribeiro AI, Zille A. Gold Nanoparticles Synthesis and Antimicrobial Effect on Fibrous Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1067. [PMID: 33919401 PMCID: PMC8143294 DOI: 10.3390/nano11051067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold nanoparticles (AuNPs). Therefore, this review highlighted the most used methods for AuNPs preparation and the current studies on the topic in order to obtain AuNPs with suitable properties for antimicrobial applications and minimize the environmental concerns in their production. Reporting the detailed information on the functionalization of fabrics, yarns, and fibers with AuNPs by different methods to improve the antimicrobial properties was the central objective. The studies combining AuNPs and textile materials have opened valuable opportunities to develop antimicrobial materials for health and hygiene products, as infection control and barrier material, with improved properties. Future studies are needed to amplify the antimicrobial effect of AuNPs onto textiles and minimize the concerns related to the synthesis.
Collapse
Affiliation(s)
| | | | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Campus de Azúrem, Universidade do Minho, 4800-058 Guimaraes, Portugal; (B.M.); (A.I.R.)
| |
Collapse
|
7
|
Adamo CB, Junger AS, Bressan LP, da Silva JAF, Poppi RJ, de Jesus DP. Fast and straightforward in-situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
LI LY, WANG XY. Progress in Analysis of Tau Protein. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Sun L, Wang C. Highly Sensitive and Rapid Surface Enhanced Raman Spectroscopic (SERS) Determination of Thiram on the Epidermis of Fruits and Vegetables Using A Silver Nanoparticle-Modified Fibrous Swab. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1687509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lili Sun
- School of Physics and Astronomy, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| | - Changshun Wang
- School of Physics and Astronomy, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Van Daele M, Griffiths MBE, Raza A, Minjauw MM, Solano E, Feng JY, Ramachandran RK, Clemmen S, Baets R, Barry ST, Detavernier C, Dendooven J. Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37229-37238. [PMID: 31523948 DOI: 10.1021/acsami.9b10848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A plasma-enhanced atomic layer deposition (PE-ALD) process to deposit metallic gold is reported, using the previously reported Me3Au(PMe3) precursor with H2 plasma as the reactant. The process has a deposition window from 50 to 120 °C with a growth rate of 0.030 ± 0.002 nm per cycle on gold seed layers, and it shows saturating behavior for both the precursor and reactant exposure. X-ray photoelectron spectroscopy measurements show that the gold films deposited at 120 °C are of higher purity than the previously reported ones (<1 at. % carbon and oxygen impurities and <0.1 at. % phosphorous). A low resistivity value was obtained (5.9 ± 0.3 μΩ cm), and X-ray diffraction measurements confirm that films deposited at 50 and 120 °C are polycrystalline. The process forms gold nanoparticles on oxide surfaces, which coalesce into wormlike nanostructures during deposition. Nanostructures grown at 120 °C are evaluated as substrates for free-space surface-enhanced Raman spectroscopy (SERS) and exhibit an excellent enhancement factor that is without optimization, only one order of magnitude weaker than state-of-the-art gold nanodome substrates. The reported gold PE-ALD process therefore offers a deposition method to create SERS substrates that are template-free and does not require lithography. Using this process, it is possible to deposit nanostructured gold layers at low temperatures on complex three-dimensional (3D) substrates, opening up opportunities for the application of gold ALD in flexible electronics, heterogeneous catalysis, or the preparation of 3D SERS substrates.
Collapse
Affiliation(s)
- Michiel Van Daele
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| | | | - Ali Raza
- Center for Nano- and Biophotonics , Ghent University , 9052 Gent , Belgium
- Photonics Research Group, INTEC Department , Ghent University-IMEC , 9052 Gent , Belgium
| | - Matthias M Minjauw
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline , 08290 Cerdanyola del Valles , Spain
| | - Ji-Yu Feng
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| | - Ranjith K Ramachandran
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| | - Stéphane Clemmen
- Center for Nano- and Biophotonics , Ghent University , 9052 Gent , Belgium
- Photonics Research Group, INTEC Department , Ghent University-IMEC , 9052 Gent , Belgium
- Laboratoire d'Information Quantique , Université Libre de Bruxelles , 1050 Bruxelles , Belgium
| | - Roel Baets
- Center for Nano- and Biophotonics , Ghent University , 9052 Gent , Belgium
- Photonics Research Group, INTEC Department , Ghent University-IMEC , 9052 Gent , Belgium
| | - Seán T Barry
- Department of Chemistry , Carleton University , K1S 5B6 Ottawa , Canada
| | - Christophe Detavernier
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| | - Jolien Dendooven
- Department of Solid State Sciences, COCOON Group , Ghent University , 9000 Gent , Belgium
| |
Collapse
|