1
|
Cong CQ, Huong LM, Dat NM, Nam NTH, An H, Hai ND, Vu NH, Hieu NH. Preparation strategies, properties highlights, and emerging applications across environmental, biological, and energy industries of silver-loaded graphitic carbon nitride: A critical review. Adv Colloid Interface Sci 2024; 334:103307. [PMID: 39405633 DOI: 10.1016/j.cis.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
In light of escalating environmental pollution and tremendous energy shortage, the development of multifunctional materials with diverse applications across biomedical and energy production platforms has become imperative. Among this domain, nanostructured heterogeneous composites based on semiconductors are exclusively promising owing to their distinct configurations. Notably, graphitic carbon nitride (g-C3N4 (CN)) has drawn substantial interest as a sustainable candidate with surface functionality, electron-rich nature, and interconnected conjugation system along the polymeric matrix. To address the remaining limitations in sub-optimal visible light absorption and rapid charge recombination, the decoration of plasmonic metals, particularly silver (Ag) nanostructures, on bare CN has been reported to induce considerable synergistic promotions. This review highlights the major advancements and challenges in designing silver-loaded graphitic carbon nitride (Ag/CN (ACN)). Fundamentals in typical synthetic strategies, such as hydrothermal, co-precipitation, or chemical reduction, for ACN heterostructures are summarized. The appearance of Ag also influences the inherent properties of CN, as emphasized through alterations in structural as well as electronic behaviors in many studies. We expect that this study can deepen insights into multiple extending applications of ACN regarding environmental, biological, and energy industries, thanks to its favorable well-rounded attributions.
Collapse
Affiliation(s)
- Che Quang Cong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Le Minh Huong
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Minh Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Hoang An
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Hai
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Hung Vu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Tazi I, Majdoub A, Majdoub M, Mrabet IE, Tanji K, Nawdali M, Khalil F, Zaitan H. Immobilization of silver-loaded graphene oxide (Ag-GO) on canvas fabric support for catalytic conversion of 4 nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51815-51833. [PMID: 39127812 DOI: 10.1007/s11356-024-34586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Due to the rising human population and industrialization, harmful chemical compounds such as 4-nitrophenol (4-NP) and various dyes are increasingly released into the environment, resulting in water pollution. It is essential to convert these harmful chemicals into harmless compounds to mitigate this pollution. This research focuses on synthesizing a novel heterogeneous catalyst using modified canvas fabric (CF) decorated with silver metal nanoparticles on graphene oxide nanosheets (Ag-GO/CF). The process involves coating the fabrics (CF) with graphene oxide (GO) nanosheets through sonication. Subsequently, silver nanoparticles are deposited in situ and reduced on the GO surface, resulting in the formation of the Ag-GO/CF composite. Various physicochemical characterizations were conducted to examine the interfacial interactions between CF, GO, and Ag nanoparticles. The catalytic activity of the nanocomposite was assessed by hydrogenating 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride (NaBH4). The results showed that the 10%Ag-5%GO/CF with a surface of 6 cm2 (3 × 2 cm) exhibited the highest catalytic activity, achieving a reduction efficiency of over 96% in 5 min. The 4-NP reduction reaction rate was well-fitted with a pseudo-first-order kinetics model with an apparent reaction rate constant (Kapp) of 0.676 min-1. Furthermore, the Ag-GO/CF composite demonstrated remarkable stability over successive cycles, with no noticeable decrease in its catalytic activity, suggesting its promising application for long-term chemical catalytic processes. This synthesized composite can be easily added to and removed from the reaction solution while maintaining high catalytic performance in the reduction of 4-NP, and it could be beneficial in avoiding problems related to powder separation.
Collapse
Affiliation(s)
- Imane Tazi
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
| | - Ali Majdoub
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
| | - Mohammed Majdoub
- Center for Graphene Research & Innovation, University of Mississippi, Oxford, MS, 38677-1848, USA
| | - Imane El Mrabet
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
- Team of Applied Chemistry, Geo-Mining, and Modeling (CAG2M), Polydisciplinary Faculty of Ouarzazate, Ibnou Zohr University, 45000, Ouarzazate, Morocco
| | - Karim Tanji
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, B.P. 133, 14000, Kenitra, Morocco
| | - Mostafa Nawdali
- Processes, Materials and Environment Laboratory (LPME), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Fouad Khalil
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
| | - Hicham Zaitan
- Processes, Materials and Environment Laboratory (LPME), Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco.
| |
Collapse
|
3
|
Majdoub A, Majdoub M, Rafqah S, Zaitan H. Incorporation of g-C 3N 4 nanosheets and CuO nanoparticles on polyester fabric for the dip-catalytic reduction of 4 nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85940-85952. [PMID: 37395877 DOI: 10.1007/s11356-023-28323-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
In the present work, we present the preparation of a new emerged heterogeneous catalyst (PE/g-C3N4/CuO) by in situ deposition of copper oxide nanoparticles (CuO) over the graphitic carbon nitride (g-C3N4) as the active catalyst and polyester (PE) fabric as the inert support. The synthesized sample (PE/g-C3N4/CuO) "dip catalyst" was studied by using various analytical techniques (Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy and dispersive X-ray spectroscopy (SEM/EDX), and transmission electron microscopy (TEM). The nanocomposite is utilized as heterogeneous catalysts for the 4-nitrophenol reduction in the presence of NaBH4, in aqueous solutions. According to experimental results, PE/g-C3N4/CuO with a surface of 6 cm2 (3 cm × 2 cm) demonstrated the catalyst exhibit excellent catalytic activity with 95% reduction efficiency for only 4 min of reaction and an apparent reaction rate constant (Kapp) of 0.8027 min-1. Further evidence that this catalyst based on prepared PE support can be a good contender for long-lasting chemical catalysis comes from the remarkable stability after 10 repetitions reaction cycles without a noticeably loss in catalytic activity. The novelty of this work consists to fabricate of catalyst based of CuO nanoparticles stabilized with g-C3N4 on the surface of an inert substrate PE, which results in an heterogenous dip-catalyst that can be easily introduced and isolated from the reaction solution with good retention of high catalytic performance in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Ali Majdoub
- Processes, Materials and Environment Laboratory (LPME), Department of Chemistry, Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco
| | - Mohammed Majdoub
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, 20000, Casablanca, Morocco
| | - Salah Rafqah
- Analytical and Molecular Chemistry Laboratory, Polydisciplainary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Hicham Zaitan
- Processes, Materials and Environment Laboratory (LPME), Department of Chemistry, Faculty of Sciences and Technology of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2202, Fez, Morocco.
| |
Collapse
|
4
|
Beiranvand M, Farhadi S, Mohammadi-Gholami A. Ag NPs decorated on the magnetic rod-like hydroxyapatite/MIL-101(Fe) nanocomposite as an efficient catalyst for the reduction of some nitroaromatic compounds and as an effective antimicrobial agent. RSC Adv 2023; 13:13683-13697. [PMID: 37152578 PMCID: PMC10157360 DOI: 10.1039/d3ra01180a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023] Open
Abstract
A rod-like magnetic nanocomposite was successfully synthesized in this work by loading Ag and Fe3O4 nanoparticles onto the surface of the hydroxyapatite/MIL-101(Fe) metal-organic framework. Various techniques were used to investigate the crystalline nature, size, morphology, and magnetic and structural properties of the HAP/MIL-101(Fe)/Ag/Fe3O4 nanocomposite, including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), BET surface area measurements, and zeta potential analysis. The results indicate that the nanocomposite sample is composed of Ag and Fe3O4 nanoparticles adhered to rod-like hydroxyapatite/MIL-101(Fe). The catalytic and antibacterial abilities of the as-prepared HAP/MIL-101(Fe)/Ag/Fe3O4 were studied. This nanocomposite was utilized as a heterogeneous catalyst for the catalytic reduction of toxic pollutants, including 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2,4-dinitrophenol (2,4-NP), 4-nitroaniline (4-NA), and 2-nitroaniline (2-NA) by NaBH4 in water and at room temperature. These compounds were converted to their amine derivatives within 8-18 min with rate constant values equal to 0.2, 0.3, 0.33, and 0.47 min-1, respectively. This quaternary magnetic catalyst can be easily separated from the reaction medium using an external magnetic field and reused. The synthesized nanocomposite maintained its efficiency in reducing nitroaromatic compounds after 5 runs, showing the high stability of the catalyst. Besides, the antibacterial activity of the nanocomposite against Gram-negative and Gram-positive bacteria was evaluated using the disk diffusion method. The inhibition zone diameter of the nanocomposite against Staphylococcus aureus, Staphylococcus saprophyticus, and Escherichia coli was measured to be 17, 14, and 12 mm, respectively.
Collapse
Affiliation(s)
- Maryam Beiranvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | | |
Collapse
|
5
|
Suresh R, Karthikeyan NS, Gnanasekaran L, Rajendran S, Soto-Moscoso M. Facile synthesis of CuO/g-C 3N 4 nanolayer composites with superior catalytic reductive degradation behavior. CHEMOSPHERE 2023; 315:137711. [PMID: 36608894 DOI: 10.1016/j.chemosphere.2022.137711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The cupric oxide (CuO) loaded graphitic carbon nitride (g-C3N4) nanocomposites (CuO/g-C3N4) were prepared by a facile calcination method. The formation of monoclinic CuO nanocrystals along with g-C3N4 was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. X-ray photoelectron spectral (XPS) analysis further confirms the formation of CuO/g-C3N4. Distribution of CuO stone-like crystalline nanoparticles on g-C3N4 nanosheets was observed by transmission electron microscopic images. The influence of CuO loading on the optical property of g-C3N4 was determined by ultraviolet (UV)-visible absorption and photoluminescence (PL) spectral analysis. Band gap was decreased from 2.7 to 2.3 eV by the addition of CuO nanoparticles. The catalytic performance of the synthesized samples in 4-nitrophenol (4-NP) and methyl orange (MO) reduction was evaluated. The 5 wt% CuO/g-C3N4 showed 99.5% (7 min) and 99.7% (4 min) reduction efficiency for 4-NP and MO respectively. The 5 wt% CuO/g-C3N4 could become a potential catalyst in the chemical treatment of organic pollutants.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - N S Karthikeyan
- Department of Chemistry, Easwari Engineering College (Autonomous), Chennai, 600089, Tamil Nadu, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | | |
Collapse
|
6
|
Microwave-assisted Synthesis, Characterization, Photocatalytic Degradation of Antibiotics, and Fluorometric Selective Sensing Activity of g-C3N4 Supported CuO Composites. J Fluoresc 2022; 33:987-1002. [PMID: 36542224 DOI: 10.1007/s10895-022-03125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Herein, we have designed for the fabrication of a series of g-C3N4/CuO composite by using one-step microwave-assisted synthesis for the degradation of antibiotics and detection of nano-molar range of toxic heavy metal ions. The synthesized g-C3N4/CuO composites were analyzed and characterized to know the structure, phase, surface area, absorption region, bandgap, and size of the composites. From the observation of TEM and XRD measurements, g-C3N4/CuO composites have hexagonal shape with average diameter of the particles is 25 ± 5 nm. The observed band gap values from UV-vis DRS for g-C3N4 nanosheets and CuO NPs are 2.64 eV and 1.72 eV. The synthesized g-C3N4/CuO composite has prodigious specific surface area (32.47 m2/g), which is the evident for superior heterogeneous catalytic applications. Therefore, the synthesized g-C3N4/CuO composites were tested for the degradation of antibiotics such as tetracycline (TC) and ciprofloxacin (CIP) under UV light illumination, it shows 88.02% and 90.01% degradation was observed within 1 h due to the matching optical band gap and internal charge transfer of excitons with in the heterojunction surface among g-C3N4 and CuO in the composite than the individual components (g-C3N4 and CuO) due to the high surface area and tiny particles of CuO were randomly deposited on the surface of g-C3N4 nanosheets. The catalytic reduction reaction follows as pseudo-first order equation and reused for 5 consecutive cycles without remarkable loss of catalytic activity. Moreover, the synthesized CuO NPs and g-C3N4/CuO composites were used as a prominent fluorescence sensing probe for the selective detection of Pb2+ in nano-molar range of concentration with Ksv is 1.38 × 104 mol- 1dm3. It was observed as a linear relationship based on the change in intensity, the limit of detection was determined to be 0.184 nM.
Collapse
|
7
|
Xia W, Zhao F, Fang P, An M, Zhu J, Cheng K, Xia M. Magnetic Fe3O4@C nanoparticles separated from cold rolling mill sludge for 4-nitrophenol reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Nisha V, Moolayadukkam S, Paravannoor A, Panoth D, Chang YH, Palantavida S, Hinder SJ, Pillai SC, Vijayan BK. Cu doped graphitic C3N4 for p-nitrophenol reduction and sensing applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Highly efficient noble metal-free g-C3N4@NixSy nanocomposites for catalytic reduction of nitrophenol, azo dyes and Cr(VI). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Determination and degradation of carbamazepine using g-C3N4@CuS nanocomposite as sensitive fluorescence sensor and efficient photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X. Recent Advances in g-C 3 N 4 -Based Photocatalysts for Pollutant Degradation and Bacterial Disinfection: Design Strategies, Mechanisms, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105089. [PMID: 34841656 DOI: 10.1002/smll.202105089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging photocatalytic technology promises to provide an effective solution to the global energy crisis and environmental pollution. Graphite carbon nitride (g-C3 N4 ) has gained extensive attention in the scientific community due to its excellent physical and chemical properties, attractive electronic band structure, and low cost. In this paper, research progress in design strategies for g-C3 N4 -based photocatalysts in the past five years is reviewed from the perspectives of nanostructure construction, element doping, and heterostructure construction. To clarify the relationship between application requirements and structural design, variations in the morphology, electronic energy band structure, light absorption capacity, as well as interfacial charge transfer caused by various modification strategies are discussed in detail. The recent applications of g-C3 N4 -based photocatalysts for pollutant degradation and bacterial disinfection are reviewed, as well as the antimicrobial activity and degradation mechanisms. Finally, current challenges and future development directions for the practical application of g-C3 N4 -based photocatalysts are tentatively discussed.
Collapse
Affiliation(s)
- Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
12
|
Balraj G, Gurrapu R, Anil Kumar A, Sumalatha V, Ayodhya D. Facile synthesis and characterization of noble metals decorated g-C3N4 (g-C3N4/Pt and g-C3N4/Pd) nanocomposites for efficient photocatalytic production of Schiff bases. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Ayodhya D. Ag-SPR and semiconductor interface effect on a ternary CuO@Ag@Bi 2S 3 Z-scheme catalyst for enhanced removal of HIV drugs and (photo)catalytic activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02595g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of ternary composites has gained great interest as they can be used as a catalyst due to the different semiconductors with the variation in the band edge positions creates a potential gradient at the composite interface.
Collapse
Affiliation(s)
- Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad-500007, Telangana State, India
| |
Collapse
|
14
|
Arumugasamy SK, Chellasamy G, Sekar S, Lee S, Govindaraju S, Yun K. TriMOF synergized on the surface of activated carbon produced from pineapple leaves for the environmental pollutant reduction and oxygen evolution process. CHEMOSPHERE 2022; 286:131893. [PMID: 34403903 DOI: 10.1016/j.chemosphere.2021.131893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Facile and modest synthesis of significantly effective and less-cost catalysts for environmental pollutant degradation and oxygen evolution holds substantial potential in environmental and energy fields. Hereby, Trimetallic organic frameworks (TriMOF) consisting of Fe, Co, and Zn synergized on the surface of activated carbon (AC) from pineapple leaves tend to show exponential catalytic activity due to the more excellent ionic conductivity, catalytic stability and multiple active sites provided by different metal precursors. Furthermore, the developed nanocomposite was coated on the stainless-steel electrode substrate at room temperature, delivering greater electrocatalytic surface area and numerous active sites. The oxidation reaction kinetics drives the catalytic reduction of 4-nitrophenol to 4-aminophenol with a minimal time of 12 min @ >97 % efficiency. Furthermore, on electrocatalytic oxidation of water splitting process due to the presence of multiple metallic, active sites, the overpotential is at 370 mV having Tafel slope of 40 mV/dec and electrochemically active surface area of is 9.9 mF/cm2. This superior catalytic reduction of 4-nitrophenol and electrocatalytic water oxidation process is attributed to the developed composite's active centre and conductivity.
Collapse
Affiliation(s)
- Shiva Kumar Arumugasamy
- Department of Bionanotechnology, Gachon University, Seongnam-daero, Gyeonggi-do, 13120, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-daero, Gyeonggi-do, 13120, Republic of Korea
| | - Sankar Sekar
- Department of Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea; Quantum-functional Semiconductor Research Centre, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea; Quantum-functional Semiconductor Research Centre, Dongguk University, Seoul, 04620, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-daero, Gyeonggi-do, 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-daero, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
15
|
Venkatesh D, Deepthi G, Mangatayaru KG, Noorjahan M. Ultrasound-assisted synthesis, spectral and analytical analysis of g-C3N4/CeO2 composites towards catalytic reduction of nitroaromatic compounds & selective fluorescence detection of Hg2+. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Self-Supporting g-C3N4 Nanosheets/Ag Nanoparticles Embedded onto Polyester Fabric as “Dip-Catalyst” for Synergic 4-Nitrophenol Hydrogenation. Catalysts 2021. [DOI: 10.3390/catal11121533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the design of a cost-effective catalyst with excellent recyclability, simple recuperation and facile recovery, and the examination between the reaction cycles via the development of self-supporting g-C3N4 nanosheets/Ag NPs polyester fabric (PES) using a simple, facile and efficient approach. PES fabrics were coated via a sono-coating method with carbon nitride nanosheets (GCNN) along with an in situ setting of Ag nanoparticles on PES coated GCNN surface producing PES-GCNN/Ag0. The elaborated textile-based materials were fully characterized using FTIR, 13C NMR, XRD, TGA, SEM, EDX, etc. Catalytic performance of the designed “Dip-Catalyst” demonstrated that the as-prepared PES-GCCN/Ag0 has effectively catalyzed the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4. The 3 × 3 cm2 PES-GCNN/Ag0 showed the best catalytic activity, displaying an apparent rate constant (Kapp) equal to 0.43 min−1 and more than 10 reusability cycles, suggesting that the prepared catalyst-based PES fabric can be a strong nominee for sustainable chemical catalysis. Moreover, the coated fabrics exhibited appreciable antibacterial capacity against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli). The present study opens up new opportunities for the future design of a low cost and large-scale process of functional fabrics.
Collapse
|
17
|
Sert B, Ozay Y, Harputlu E, Ozdemir S, Yalcin MS, Ocakoglu K, Dizge N. Improvement in performance of g-C3N4 nanosheets blended PES ultrafiltration membranes including biological properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yan K, Mu C, Meng L, Fei Z, Dyson PJ. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. NANOSCALE ADVANCES 2021; 3:3708-3729. [PMID: 36133016 PMCID: PMC9419292 DOI: 10.1039/d1na00257k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Bacterial infections and transmission threaten human health and well-being. Graphite carbon nitride (g-C3N4), a promising photocatalytic antibacterial nanomaterial, has attracted increasing attention to combat bacterial transmission, due to the outstanding stability, high efficiency and environmental sustainability of this material. However, the antibacterial efficiency of g-C3N4 is affected by several factors, including its specific surface area, rapid electron/hole recombination processes and optical absorption properties. To improve the efficiency of the antibacterial properties of g-C3N4 and extend its range of applications, various nanocomposites have been prepared and evaluated. In this review, the advances in amplifying the photocatalytic antibacterial efficiency of g-C3N4-based nanocomposites is discussed, including different topologies, noble metal decoration, non-noble metal doping and heterojunction construction. The enhancement mechanisms and synergistic effects in g-C3N4-based nanocomposites are highlighted. The remaining challenges and future perspectives of antibacterial g-C3N4-based nanocomposites are also discussed.
Collapse
Affiliation(s)
- Kai Yan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
19
|
Azzam AB, Djellabi R, Sheta SM, El-Sheikh SM. Ultrafast conversion of carcinogenic 4-nitrophenol into 4-aminophenol in the dark catalyzed by surface interaction on BiPO 4/g-C 3N 4 nanostructures in the presence of NaBH 4. RSC Adv 2021; 11:18797-18808. [PMID: 35478611 PMCID: PMC9033504 DOI: 10.1039/d1ra02852a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/15/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
The heterogeneous catalytic conversion of pollutants into useful industrial compounds is a two-goals at once process, which is highly recommended from the environmental, economic, and industrial points of view. In this regard, design materials with high conversion ability for a specific application is required to achieve such a goal. Herein, the synthesis conditions for the fabrication of BiPO4 nanorod bundles supported on g-C3N4 nanosheets as heterojunction composites was achieved using a facile ex situ chemical deposition for the reductive conversion of carcinogenic 4-nitrophenol (4-NP) into 4-aminophenol (4-AP). To better understand the mechanistic reduction pathways, BiPO4/g-C3N4 composites with varying ratios where obtained. The morphology and structure of BiPO4/g-C3N4 composites were checked using several methods: XRD, FE-SEM, HRTEM, XPS, and FT-IR, and it was found that hexagonal phase BiPO4 nanorod bundles were randomly distributed on the g-C3N4 nanosheets. Overall, the reduction ability of BiPO4/g-C3N4 composites was far better than bare BiPO4 and g-C3N4. A total reductive conversion of 4-NP at a concentration of 10 mg L-1 into 4-AP was found with 50% BiPO4/g-C3N4 composite within only one minute of reaction. Moreover, the presence of reducing agent (NaBH4) enhanced the kinetic rate constant up to 2.914 min-1 using 50% BiPO4/g-C3N4, which was much faster than bare BiPO4 (0.052 min-1) or g-C3N4 (0.004 min-1). The effects of some operating parameters including the initial concentration of 4-NP and catalyst dosage were also evaluated during the experiments. BiPO4/g-C3N4 showed great stability and recyclability, wherein, the catalytic reduction efficiency remains the same after five runs. A plausible 4-NP reduction mechanism was discussed. The high catalytic activity with the good stability of BiPO4/g-C3N4 make it a potential candidate for the reduction of nitroaromatic compounds in real wastewaters.
Collapse
Affiliation(s)
- Ahmed B Azzam
- Faculty of Science, Chemistry Department, Helwan University Ain Helwan Cairo 11795 Egypt +201285259709
| | - Ridha Djellabi
- Università degli Studi di Milano, Dip. Chimica and INSTM-UdR Milano Via Golgi, 19 20133 Milano Italy
| | - Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre 33, El-Behouth St. Dokki Giza 12622 Egypt
| | - S M El-Sheikh
- Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R & D Institute (CMRDI) P. O. Box, 87 Helwan 11421 Cairo Egypt
| |
Collapse
|
20
|
Rostami M, Nayebossadr S, Mozaffari S, Sobhani-Nasab A, Rahimi-Nasrabadi M, Fasihi-Ramandi M, Ganjali MR, Bardajee GR, Badiei A. Heterojunction of N/B/RGO and g-C 3N 4 anchored magnetic ZnFe 2O 4@ZnO for promoting UV/Vis-induced photo-catalysis and in vitro toxicity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11430-11443. [PMID: 33123882 DOI: 10.1007/s11356-020-10572-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
To promote the low photocatalytic efficiency caused by the recombination of electron/hole pairs and widen the photo-response wavelength window, ZnFe2O4@ZnO-N/B/RGO and ZnFe2O4@ZnO-C3N4 ternary heterojunction nanophotocatalysts were designed and successfully prepared through a sol-gel technique. In comparison to bare ZnFe2O4 and ZnO, the ZnFe2O4-ZnO@N/B/RGO and ZnFe2O4@ZnO-C3N4 ternary products showed highly improved photocatalytic properties in the degradation of methyl orange (MO) under ultra-violet (UV) and visible light irradiation. Various physicochemical properties of the photocatalysts were evaluated through field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The observations indicated that the ternary heterojuncted ZnFe2O4@ZnO-N/B/RGO absorbs lower energy visible light wavelengths, which is an enhancement in the photocatalytic properties of ZnFe2O4@ZnO loaded on reduced graphene oxide (RGO) nanosheets and graphite-like carbon nitride (g-C3N4). This gives the catalyst photo-Fenton degradation properties.
Collapse
Affiliation(s)
- Mojtaba Rostami
- Halal Research Center of IRI, FDA, Tehran, Iran
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Ali Sobhani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Rostami M, Sharafi P, Mozaffari S, Adib K, Sobhani-Nasab A, Rahimi-Nasrabadi M, Fasihi-Ramandi M, Ganjali MR, Badiei A. A facile preparation of ZnFe2O4–CuO-N/B/RGO and ZnFe2O4–CuO–C3N4 ternary heterojunction nanophotocatalyst: characterization, biocompatibility, photo-Fenton-like degradation of MO and magnetic properties. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2021; 32:5457-5472. [DOI: 10.1007/s10854-021-05268-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 06/20/2023]
|
22
|
Ayodhya D, Veerabhadram G. Microwave-assisted fabrication of g-C 3N 4 nanosheets sustained Bi 2S 3 heterojunction composites for the catalytic reduction of 4-nitrophenol. ENVIRONMENTAL TECHNOLOGY 2021; 42:826-841. [PMID: 31318310 DOI: 10.1080/09593330.2019.1646323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this work, we report a stable g-C3N4, Bi2S3, and g-C3N4/Bi2S3 composite catalysts were prepared via a facile one-pot microwave-assisted method and characterized. The orthorhombic phase and nearly spherical shape of the particles with an average diameter of 5-25 nm of g-C3N4/Bi2S3 composite were obtained from XRD and TEM. The composite also exhibits a high surface area (32.15 m2/g), which may provide convenient transportation and diffusion for substrate molecule. The optical studies were displayed the g-C3N4/Bi2S3 composite has a sharp absorption band in the visible region, higher charge separation, and reduced recombination rate. These results show that the Bi2S3 NPs have good crystallinity and are uniformly deposited on the surface of the g-C3N4 sheet. The catalytic performance of the g-C3N4/Bi2S3 composite for the reduction of 4-NP to 4-AP was exhibited approximately 100%, which is 1.48 and 2.34 times higher than the Bi2S3 and g-C3N4 catalysts, respectively. The pseudo-first-order rate constant was estimated as 1.648 × 10 -2 min-1 for the reduction of 4-NP using g-C3N4/Bi2S3 composite in 1 h reaction time. The effect of catalyst dosage (0-30 mg) was also investigated for the reduction of 4-NP using g-C3N4/Bi2S3 composite catalyst. Moreover, the reusability of the g-C3N4/Bi2S3 composite was exhibited a better reduction of the 4-NP even after 5 cycles and it was found that 8% reduction in the initial reduction rate. The obtained results from this study show that g-C3N4/Bi2S3 composite has the potential efficiency and stability to make it an ideal catalyst for the reduction of toxic effluents and wastewater treatment.
Collapse
Affiliation(s)
- Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
23
|
Ayodhya D, Veerabhadram G. One-pot, aqueous synthesis of multifunctional biogenic Ag NPs for efficient 4-NP reduction, Hg2+ detection, bactericidal, and antioxidant activities. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1857407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India
| |
Collapse
|
24
|
Yao L, Chen Z, Li J, Shi C. Creation of oxygen vacancies to activate lanthanum-doped bismuth titanate nanosheets for efficient synchronous photocatalytic removal of Cr(VI) and methyl orange. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Han R, Peng J, Xiao Y, Hao Y, Jia Y, Qian Z. Ag2S nanoparticles as an emerging single-component theranostic agent. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Ayodhya D, Veerabhadram G. Green synthesis of garlic extract stabilized Ag@CeO2 composites for photocatalytic and sonocatalytic degradation of mixed dyes and antimicrobial studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127611] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Facile thermal fabrication of CuO nanoparticles from Cu(II)-Schiff base complexes and its catalytic reduction of 4-nitrophenol, antioxidant, and antimicrobial studies. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|