1
|
Genoni A, Martín Pendás Á. Critical assessment of the x-ray restrained wave function approach: Advantages, drawbacks, and perspectives for density functional theory and periodic ab initio calculations. J Chem Phys 2024; 160:234108. [PMID: 38899684 DOI: 10.1063/5.0213247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The x-ray restrained wave function (XRW) method is a quantum crystallographic technique to extract wave functions compatible with experimental x-ray diffraction data. The approach looks for wave functions that minimize the energies of the investigated systems and also reproduce sets of x-ray structure factors. Given the strict relationship between x-ray structure factors and electron distributions, the strategy practically allows determining wave functions that correspond to given (usually experimental) electron densities. In this work, the capabilities of the XRW approach were further tested. The aim was to evaluate whether the XRW technique could serve as a tool for suggesting new exchange-correlation functionals for density functional theory or refining existing ones. Additionally, the ability of the method to address the influences of the crystalline environment was also assessed. The outcomes of XRW computations were thus compared to those of traditional gas-phase, embedding quantum mechanics/molecular mechanics, and fully periodic calculations. The results revealed that, irrespective of the initial conditions, the XRW computations practically yield a consensus electron density, in contrast to the currently employed density functional approximations (DFAs), which tend to give a too large range of electron distributions. This is encouraging in view of exploiting the XRW technique to develop improved functionals. Conversely, the calculations also emphasized that the XRW method is limited in its ability to effectively address the influences of the crystalline environment. This underscores the need for a periodic XRW technique, which would allow further untangling the shortcomings of DFAs from those inherent to the XRW approach.
Collapse
Affiliation(s)
- Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avenida Julian Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Pawlędzio S, Ziemniak M, Trzybiński D, Arhangelskis M, Makal A, Woźniak K. Influence of N-protonation on electronic properties of acridine derivatives by quantum crystallography. RSC Adv 2024; 14:5340-5350. [PMID: 38348299 PMCID: PMC10859733 DOI: 10.1039/d3ra08081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Applications of 9-aminoacridine (9aa) and its derivatives span fields such as chemistry, biology, and medicine, including anticancer and antimicrobial activities. Protonation of such molecules can alter their bioavailability as weakly basic drugs like aminoacridines exhibit reduced solubility at high pH levels potentially limiting their effectiveness in patients with elevated gastric pH. In this study, we analyse the influence of protonation on the electronic characteristics of the molecular organic crystals of 9-aminoacridine. The application of quantum crystallography, including aspherical atom refinement, has enriched the depiction of electron density in the studied systems and non-covalent interactions, providing more details than previous studies. Our experimental results, combined with a topological analysis of the electron density and its Laplacian, provided detailed descriptions of how protonation changes the electron density distribution around the amine group and water molecule, concurrently decreasing the electron density at bond critical points of N/O-H bonds. Protonation also alters the molecular architecture of the systems under investigation. This is reflected in different proportions of the N⋯H and O⋯H intermolecular contacts for the neutral and protonated forms. Periodic DFT calculations of the cohesive energies of the crystal lattice, as well as computed interaction energies between molecules in the crystal, confirm that protonation stabilises the crystal structure due to a positive synergy between strong halogen and hydrogen bonds. Our findings highlight the potential of quantum crystallography in predicting crystal structure properties and point to its possible applications in developing new formulations for poorly soluble drugs.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Marcin Ziemniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Damian Trzybiński
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Mihails Arhangelskis
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Anna Makal
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| |
Collapse
|
3
|
Macetti G, Genoni A. Introduction of a weighting scheme for the X-ray restrained wavefunction approach: advantages and drawbacks. Acta Crystallogr A Found Adv 2023; 79:25-40. [PMID: 36601761 DOI: 10.1107/s2053273322010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
In a quite recent study [Genoni et al. (2017). IUCrJ, 4, 136-146], it was observed that the X-ray restrained wavefunction (XRW) approach allows a more efficient and larger capture of electron correlation effects on the electron density if high-angle reflections are not considered in the calculations. This is due to the occurrence of two concomitant effects when one uses theoretical X-ray diffraction data corresponding to a single-molecule electron density in a large unit cell: (i) the high-angle reflections are generally much more numerous than the low- and medium-angle ones, and (ii) they are already very well described at unrestrained level. Nevertheless, since high-angle data also contain important information that should not be disregarded, it is not advisable to neglect them completely. For this reason, based on the results of the previous investigation, this work introduces a weighting scheme for XRW calculations to up-weight the contribution of low- and medium-angle reflections, and, at the same time, to reasonably down-weight the importance of the high-angle data. The proposed strategy was tested through XRW computations with both theoretical and experimental structure-factor amplitudes. The tests have shown that the new weighting scheme works optimally if it is applied with theoretically generated X-ray diffraction data, while it is not advantageous when traditional experimental X-ray diffraction data (even of very high resolution) are employed. This also led to the conclusion that the use of a specific external parameter λJ for each resolution range might not be a suitable strategy to adopt in XRW calculations exploiting experimental X-ray data as restraints.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques, 1 Boulevard Arago, Metz, F-57078, France
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques, 1 Boulevard Arago, Metz, F-57078, France
| |
Collapse
|
4
|
Genoni A. On the termination of the X-ray constrained wavefunction procedure: reformulation of the method for an unequivocal determination of λ. Acta Crystallogr A Found Adv 2022; 78:302-308. [DOI: 10.1107/s2053273322003746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The X-ray constrained/restrained wavefunction (XCW/XRW) approach of quantum crystallography is revisited by introducing the stationary condition of the Jayatilaka functional with respect to the Lagrange multiplier λ. The theoretical derivation has unequivocally shown that the right value of λ is a maximum stationary point of the functional to optimize, thus enabling the solution of the longstanding problem of establishing the point at which to halt the XCW/XRW procedure. Based on the new finding, a reformulation of the X-ray constrained wavefunction algorithm is proposed and its implementation is envisaged. In addition to relying on more solid mathematical grounds, the new variant of the method will be intrinsically more physically meaningful, allowing a straightforward evaluation of the highest level of confidence with which the experimental X-ray diffraction data can be possibly reproduced.
Collapse
|
5
|
Davidson ML, Grabowsky S, Jayatilaka D. X-ray constrained wavefunctions based on Hirshfeld atoms. II. Reproducibility of electron densities in crystals of α-oxalic acid dihydrate. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:397-415. [PMID: 35695114 DOI: 10.1107/s2052520622004103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The Hirshfeld atom-based X-ray constrained wavefunction fitting (HA-XCW) procedure is tested for its reproducibility, and the information content of the fitted wavefunction is critically assessed. Fourteen different α-oxalic acid dihydrate data sets are used for this purpose, and the first joint fitting to 12 of these data sets is reported. There are systematic features in the electron density obtained from all data sets which agree with higher level benchmark calculations, but there are also many other strong systematic features which disagree with the reference calculations, most notably those associated with the electron density near the nuclei. To enhance reproducibility, three new protocols are described and tested to address the halting problem of XCW fitting, namely: an empirical power-function method, which is useful for estimating the accuracy of the structure factor uncertainties; an asymptotic extrapolation method based on ideas from density functional theory; and a `conservative method' whereby the smallest value of the regularization parameter is chosen from a series of data sets, or subsets.
Collapse
Affiliation(s)
- Max L Davidson
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
6
|
Bürgi HB, Genoni A. Remarks on X-ray constrained/restrained wavefunction fitting. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:298-304. [PMID: 35695103 DOI: 10.1107/s2052520622004164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
X-ray constrained/restrained wavefunctions (XCWs/XRWs) result from a combination of theory and experiment and are therefore affected by experimental errors and model uncertainties. The present XCW/XRW procedure does not take this into account, thus limiting the meaning and significance of the obtained wavefunctions.
Collapse
Affiliation(s)
- Hans Beat Bürgi
- Department of Chemistry, Biochemistry and Pharmacy, University of Berne, Freiestr. 12, Bern, CH-3012, Switzerland
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques, 1 Boulevard Arago, Metz, 57050, France
| |
Collapse
|
7
|
Davidson ML, Grabowsky S, Jayatilaka D. X-ray constrained wavefunctions based on Hirshfeld atoms. I. Method and review. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:312-332. [PMID: 35695105 DOI: 10.1107/s2052520622004097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The X-ray constrained wavefunction (XCW) procedure for obtaining an experimentally reconstructed wavefunction from X-ray diffraction data is reviewed. The two-center probability distribution model used to perform nuclear-position averaging in the original paper [Grimwood & Jayatilaka (2001). Acta Cryst. A57, 87-100] is carefully distinguished from the newer one-center probability distribution model. In the one-center model, Hirshfeld atoms are used, and the Hirshfeld atom based X-ray constrained wavefunction (HA-XCW) procedure is described for the first time, as well as its efficient implementation. In this context, the definition of the related X-ray wavefunction refinement (XWR) method is refined. The key halting problem for the XCW method - the procedure by which one determines when overfitting has occurred - is named and work on it reviewed.
Collapse
Affiliation(s)
- Max L Davidson
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
8
|
Malaspina LA, Genoni A, Grabowsky S. lamaGOET: an interface for quantum crystallography. J Appl Crystallogr 2021; 54:987-995. [PMID: 34188618 PMCID: PMC8202027 DOI: 10.1107/s1600576721002545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
In quantum crystallography, theoretical calculations and crystallographic refinements are closely intertwined. This means that the employed software must be able to perform both quantum-mechanical calculations and crystallographic least-squares refinements. So far, the program Tonto is the only one able to do that. The lamaGOET interface described herein deals with this issue since it interfaces dedicated quantum-chemical software (the widely used Gaussian package and the specialized ELMOdb program) with the refinement capabilities of Tonto. Three different flavours of quantum-crystallographic refinements of the dipetide glycyl-l-threonine dihydrate are presented to showcase the capabilities of lamaGOET: Hirshfeld atom refinement (HAR), HAR-ELMO, namely HAR coupled with extremely localized molecular orbitals, and X-ray constrained wavefunction fitting.
Collapse
Affiliation(s)
- Lorraine A. Malaspina
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France
| | - Simon Grabowsky
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| |
Collapse
|
9
|
Malaspina LA, Genoni A, Jayatilaka D, Turner MJ, Sugimoto K, Nishibori E, Grabowsky S. The advanced treatment of hydrogen bonding in quantum crystallography. J Appl Crystallogr 2021; 54:718-729. [PMID: 34188611 PMCID: PMC8202034 DOI: 10.1107/s1600576721001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
Although hydrogen bonding is one of the most important motifs in chemistry and biology, H-atom parameters are especially problematic to refine against X-ray diffraction data. New developments in quantum crystallography offer a remedy. This article reports how hydrogen bonds are treated in three different quantum-crystallographic methods: Hirshfeld atom refinement (HAR), HAR coupled to extremely localized molecular orbitals and X-ray wavefunction refinement. Three different compound classes that form strong intra- or intermolecular hydrogen bonds are used as test cases: hydrogen maleates, the tripeptide l-alanyl-glycyl-l-alanine co-crystallized with water, and xylitol. The differences in the quantum-mechanical electron densities underlying all the used methods are analysed, as well as how these differences impact on the refinement results.
Collapse
Affiliation(s)
- Lorraine A. Malaspina
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France
| | - Dylan Jayatilaka
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Michael J. Turner
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute/Diffraction and Scattering Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiji Nishibori
- Department of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Japan
| | - Simon Grabowsky
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| |
Collapse
|
10
|
Kleemiss F, Wieduwilt EK, Hupf E, Shi MW, Stewart SG, Jayatilaka D, Turner MJ, Sugimoto K, Nishibori E, Schirmeister T, Schmidt TC, Engels B, Grabowsky S. Similarities and Differences between Crystal and Enzyme Environmental Effects on the Electron Density of Drug Molecules. Chemistry 2021; 27:3407-3419. [PMID: 33090581 PMCID: PMC7898524 DOI: 10.1002/chem.202003978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/28/2023]
Abstract
The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low-molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. However, this difference has non-negligible consequences for derived properties.
Collapse
Affiliation(s)
- Florian Kleemiss
- Department 2 – Biology/Chemistry, Institute of Inorganic Chemistry and CrystallographyUniversity of BremenLeobener Str. 3 and 7, 28359 BremenGermany
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3, 3012 BernSwitzerland
| | - Erna K. Wieduwilt
- Department 2 – Biology/Chemistry, Institute of Inorganic Chemistry and CrystallographyUniversity of BremenLeobener Str. 3 and 7, 28359 BremenGermany
- Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019Université de Lorraine & CNRSBoulevard Arago, 57078 MetzFrance
| | - Emanuel Hupf
- Department 2 – Biology/Chemistry, Institute of Inorganic Chemistry and CrystallographyUniversity of BremenLeobener Str. 3 and 7, 28359 BremenGermany
| | - Ming W. Shi
- School of Molecular SciencesUniversity of Western Australia35 Stirling Highway, Perth WA 6009Australia
| | - Scott G. Stewart
- School of Molecular SciencesUniversity of Western Australia35 Stirling Highway, Perth WA 6009Australia
| | - Dylan Jayatilaka
- School of Molecular SciencesUniversity of Western Australia35 Stirling Highway, Perth WA 6009Australia
| | - Michael J. Turner
- School of Molecular SciencesUniversity of Western Australia35 Stirling Highway, Perth WA 6009Australia
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research InstituteSPring-81-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198Japan
- Institute for Integrated Cell-Materials SciencesKyoto UniversityYoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501Japan
| | - Eiji Nishibori
- Division of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials ScienceUniversity of TsukubaTsukubaJapan
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesJohannes-Gutenberg University MainzStaudingerweg 5, 55128 MainzGermany
| | - Thomas C. Schmidt
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-University WürzburgEmil-Fischer-Str. 42, 97074 WürzburgGermany
| | - Bernd Engels
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-University WürzburgEmil-Fischer-Str. 42, 97074 WürzburgGermany
| | - Simon Grabowsky
- Department 2 – Biology/Chemistry, Institute of Inorganic Chemistry and CrystallographyUniversity of BremenLeobener Str. 3 and 7, 28359 BremenGermany
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3, 3012 BernSwitzerland
| |
Collapse
|
11
|
Podhorský M, Bučinský L, Jayatilaka D, Grabowsky S. HgH 2 meets relativistic quantum crystallography. How to teach relativity to a non-relativistic wavefunction. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2021; 77:54-66. [PMID: 33399131 DOI: 10.1107/s2053273320014837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Abstract
The capability of X-ray constrained wavefunction (XCW) fitting to introduce relativistic effects into a non-relativistic wavefunction is tested. It is quantified how much of the reference relativistic effects can be absorbed in the non-relativistic XCW calculation when fitted against relativistic structure factors of a model HgH2 molecule. Scaling of the structure-factor sets to improve the agreement statistics is found to introduce a significant systematic error into the XCW fitting of relativistic effects.
Collapse
Affiliation(s)
- Michal Podhorský
- Institute of Physical Chemistry and Chemical Physics FCHPT, Slovak University of Technology, Radlinskeho 9, Bratislava SK-812 37, Slovakia
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics FCHPT, Slovak University of Technology, Radlinskeho 9, Bratislava SK-812 37, Slovakia
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth WA 6009, Australia
| | - Simon Grabowsky
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Affiliation(s)
- Piero Macchi
- Department, Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
- Center for Nano Science and Technology CNST@polimi, Italian Institute of Technology, Milano, Italy
| |
Collapse
|
13
|
Abstract
In this review article, we report on the recent progresses in the field of quantum crystallography that has witnessed a massive increase of production coupled with a broadening of the scope in the last decade. It is shown that the early thoughts about extracting quantum mechanical information from crystallographic experiments are becoming reality, although a century after prediction. While in the past the focus was mainly on electron density and related quantities, the attention is now shifting toward determination of wavefunction from experiments, which enables an exhaustive determination of the quantum mechanical functions and properties of a system. Nonetheless, methods based on electron density modelling have evolved and are nowadays able to reconstruct tiny polarizations of core electrons, coupling charge and spin models, or determining the quantum behaviour at extreme conditions. Far from being routine, these experimental and computational results should be regarded with special attention by scientists for the wealth of information on a system that they actually contain.
Collapse
|
14
|
Malaspina LA, Hoser AA, Edwards AJ, Woińska M, Turner MJ, Price JR, Sugimoto K, Nishibori E, Bürgi HB, Jayatilaka D, Grabowsky S. Hydrogen atoms in bridging positions from quantum crystallographic refinements: influence of hydrogen atom displacement parameters on geometry and electron density. CrystEngComm 2020. [DOI: 10.1039/d0ce00378f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom positions can be obtained accurately from X-ray diffraction data of hydrogen maleate salts via Hirshfeld atom refinement.
Collapse
|