1
|
Hussain S, Albaqami HA, Zourob M. Photonic Aptasensor Based on the Smart Cholesteric Liquid Crystal Network Structure for Cylindrospermopsin Detection. Anal Chem 2024; 96:19354-19362. [PMID: 39586108 DOI: 10.1021/acs.analchem.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Solid-state cholesteric liquid crystals (CLCsolid) with one-dimensional photonic structure offer a promising platform for constructing chemical and biological optical sensors, owing to their facile fabrication, signal readout, and sensitive and selective responsiveness to target analytes. In this study, we designed a CLCsolid photonic structure intertwined with an interpenetrating polymeric network (IPN) immobilized with a cylindrospermopsin aptamer (CY9) for the selective detection of the cylindrospermopsin toxin (CYT) in water. Upon exposure to CYT, it induced a blue shift in the color of the IPNCY9 biosensor chip. This shift occurred because the CY9 aptamer selectively bound to the CYT, reducing the polarity of the IPN hydrogel, leading to water release and shrinkage of the photonic structure. The IPNCY9 biosensor chips demonstrated the ability to detect CYT within a linear range of 4.2-120 nM, with a limit of detection of 2.55 nM. This innovative biosensor chip not only provides a new strategy for designing targeted toxin biosensors by immobilizing different receptors but also exhibits significant potential for use in portable kits for remote areas.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, College of Science, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Hamad Abdulaziz Albaqami
- Department of Chemistry, College of Science, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, College of Science, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Mookkan M, Kandasamy S, Al-Odayni AB, Abduh NAY, Srinivasan S, Revannasidappa BC, Kumar V, Chinnasamy K, Aravindhan S, Shankar MK. A Structural and In Silico Investigation of Potential CDC7 Kinase Enzyme Inhibitors. ACS OMEGA 2023; 8:47187-47200. [PMID: 38107948 PMCID: PMC10719926 DOI: 10.1021/acsomega.3c07059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
A crucial role in the regulation of DNA replication is played by the highly conserved CDC kinase. The CDC7 kinase could serve as a target for therapeutic intervention in cancer. The primary heterocyclic substance is pyrazole, and its derivatives offer great potential as treatments for cancer cell lines. Here, we synthesized the two pyrazole derivatives: 4-(2-(4-chlorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-1) and 4-(2-(2,4-difluorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-2). The structural confirmation of both the compounds at the three-dimensional level is characterized using single crystal X-ray diffraction and density functional theory. Furthermore, the in silico chemical biological properties were derived using molecular docking and molecular dynamics (MD) simulations. PYRA-1 and PYRA-2 crystallize in the P-1 (a = 8.184(9), b = 14.251(13), c = 15.601(15), α = 91.57(8), β = 97.48(9), 92.67(9), V = 1801.1(3) 3, and Z = 2) and P21/n (a = 14.8648(8), b = 8.5998(4), c = 15.5586(8), β = 116.47(7), V = 1780.4(19) 3, and Z = 4), space groups, respectively. In both PYRA-1 and PYRA-2 compounds, C-H···O intermolecular connections are common to stabilize the crystal structure. In addition, short intermolecular interactions stabilizes with C-H···π and π-π stacking. Crystal packing analysis was quantified using Hirshfeld surface analysis resulting in C···H, O···H, and H···H contacts in PYRA-1 exhibiting more contribution than in PYRA-2. The conformational stabilities of the molecules are same in the gas and liquid phases (water and DMSO). The docking scores measured for PYRA-1 and PYRA-2 with CDC7 kinase complexes are -5.421 and -5.884 kcal/mol, respectively. The MD simulations show that PYRA-2 is a more potential inhibitor than PYRA-1 against CDC7 kinase.
Collapse
Affiliation(s)
- Mohanbabu Mookkan
- Department
of Physics, Presidency College (Autonomous), University of Madras, Chennai 600 005, India
| | - Saravanan Kandasamy
- Faculty
of Chemistry, University of Warsaw, Ludwika Pasteura 1, Warsaw 02-093, Poland
| | - Abdel-Basit Al-Odayni
- Department
of Restorative Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Naaser Ahmed Yaseen Abduh
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sugarthi Srinivasan
- Department
of Physics and Nanotechnology, SRM Institute
of Science and Technology, Kattankulathur 603203, India
| | - Bistuvalli Chandrashekara Revannasidappa
- Department
of Pharmaceutical Chemistry, NGSM Institute
of Pharmaceutical Sciences of Nitte - Deemed to be University, Paneer, Deralakatte, Mangalore 575018, Karnataka India
| | - Vasantha Kumar
- Department
of P.G. Chemistry, Sri Dharmasthala Manjunatheshwara
College (Autonomous), Ujire 574240, India
| | | | - Sanmargam Aravindhan
- Department
of Physics, Presidency College (Autonomous), University of Madras, Chennai 600 005, India
| | - Madan Kumar Shankar
- Department
of Chemistry-BMC, University of Uppsala, Husargatan 3, Uppsala 75237, Sweden
| |
Collapse
|
3
|
Karrouchi K, Sert Y, Ansar M, Radi S, El Bali B, Imad R, Alam A, Irshad R, Wajid S, Altaf M. Synthesis, α-Glucosidase Inhibition, Anticancer, DFT and Molecular Docking Investigations of Pyrazole Hydrazone Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Faculty of Medicine and Pharmacy, Laboratory of Analytical Chemistry and Bromatology, Mohammed V University in Rabat, Rabat, Morocco
| | - Yusuf Sert
- Science and Art Faculty, Department of Physics, Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Smaail Radi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Department of Chemistry, University Mohammed Premier, Oujda, Morocco
| | - Brahim El Bali
- Laboratory of Organic, Macromolecular Chemistry and Natural Products, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Rehan Imad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anum Alam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rimsha Irshad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sheeba Wajid
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| | - Muhammad Altaf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Chalkha M, Nakkabi A, Hadda TB, Berredjem M, Moussaoui AE, Bakhouch M, Saadi M, Ammari LE, Almalki FA, Laaroussi H, Jevtovic V, Yazidi ME. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. J Mol Struct 2022; 1267:133605. [PMID: 35782312 PMCID: PMC9237569 DOI: 10.1016/j.molstruc.2022.133605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/14/2023]
Abstract
The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever to protect living beings against pathogenic microorganisms and free radicals. In this regard, new functionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among the tested compounds, pyrazoles 3a, 3f, 4e, 4f, and 4g have exhibited remarkable antimicrobial activity against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f, and 4g have shown a significant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 3a, 4f, and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole derivatives bearing sulfonamide moiety (4a-g) have displayed an important antimicrobial activity compared to pyrazoles 3a-h, this finding could be attributed to the synergistic effect of the pyrazole and sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the synthesized compounds with the target proteins and provided important information about their interaction modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, Molinspiration) show that the studied heterocycles present a very good non toxicity profile, an excellent bioavailability, and pharmacokinetics. Finally, an antiviral pharmacophore (O δ−, O δ−) was evaluated in the POM investigations and deserves all our attention to be tested against Covid-19 and its Omicron and Delta mutants.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
- Laboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, Faculté des Sciences, Université Moulay Ismail, BP 11201, Meknes 50000, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Malika Berredjem
- Laboratoire de chimie organique appliquée (LCOA), Groupe de Synthèse de biomolécules et modélisation moléculaire, Université Badji-Mokhtar Annaba, BP 12, Annaba 23000, Algérie
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez 30050, Morocco
| | - Mohamed Bakhouch
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Science, Mohammed V University, Avenue Ibn Battouta, BP. 1014, 100090 Rabat, Morocco
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, Oujda 60000, Morocco
| | - Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Hail 81451, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic and Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez, 30000, Morocco
| |
Collapse
|
5
|
Alzahrani AY, Ammar YA, Salem MA, Abu-Elghait M, Ragab A. Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100266. [PMID: 34747519 DOI: 10.1002/ardp.202100266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.
Collapse
Affiliation(s)
- Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Mary YS, Sheena Mary Y, Thomas R, Narayana B. Detailed Study of Three Halogenated Benzylpyrazole Acetamide Compounds with Potential Anticancer Properties. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1988997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Renjith Thomas
- Deparment of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangaluru, Karnataka, India
| |
Collapse
|
7
|
Şahin S, Dege N. A newly synthesized small molecule: the evaluation against Alzheimer's Disease by in silico drug design and computational structure analysis methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Synthesis, X-ray, spectroscopy, molecular docking and DFT calculations of (E)-N'-(2,4-dichlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Sivakumar C, Balachandran V, Narayana B, Salian VV, Revathi B, Shanmugapriya N, Vanasundari K. Molecular spectroscopic investigation, quantum chemical, molecular docking and biological evaluation of 2-(4-Chlorophenyl)-1-[3-(4-chlorophenyl)-5-[4-(propan-2-yl) phenyl-3, 5-dihydro-1H-pyrazole-yl] ethanone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Molecular structure, spectroscopic, quantum chemical, topological, molecular docking and antimicrobial activity of 3-(4-Chlorophenyl)-5-[4-propan-2-yl) phenyl-4, 5-dihydro-1H-pyrazol-1-yl] (pyridin-4-yl) methanone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|