1
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
2
|
Topcu Ersöz MB, Mumcu E, Avukat EN, Akay C, Pat S, Erdönmez D. Anti-adherent activity of nano-coatings deposited by thermionic vacuum arc plasma on C. albicans biofilm formation. Int J Artif Organs 2023; 46:520-526. [PMID: 37264904 DOI: 10.1177/03913988231178041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND The purpose of this study was to analyze the anti-adherent activity of nano-coatings deposited by Thermionic Vacuum Arc plasma on C. albicans ATCC 10231 biofilm. MATERIALS AND METHODS A total of 80 disc-shaped (2 × 10 mm) polymethymethacrylate samples were prepared and divided into four groups with 10 samples in each group (Control, ZnO, SnO2, Ag) (n = 10). Using thermionic vacuum arc plasma, they were coated with ZnO, SnO2, and Ag. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Viole (CV) assays were conducted for biofilm quantification. Scanning electron microscopy (SEM) was used to observe biofilm images of C. albicans biofilm. RESULTS MTT and CV mean values differ statistically significantly between all groups (p ⩽ 0.05). The SnO2 group had the lowest mean value, whereas the control group received the highest value. CONCLUSION SnO2 coating shown greater anti-adherent activity than either metal oxides. C. albicans biofilm formation on denture base surfaces is reduced following Thermionic Vacuum Arc plasma coating with SnO2.
Collapse
Affiliation(s)
| | - Emre Mumcu
- Department of Prosthodontics, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
- Advanced Material Technologies Application and Research Center, Eskişehir Osmangazi University, Eskişehir, Turkey
- Translational Medicine Research and Clinical Center, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Esra Nur Avukat
- Department of Prosthodontics, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Canan Akay
- Department of Prosthodontics, Faculty of Dentistry, Eskişehir Osmangazi University, Eskişehir, Turkey
- Advanced Material Technologies Application and Research Center, Eskişehir Osmangazi University, Eskişehir, Turkey
- Translational Medicine Research and Clinical Center, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Suat Pat
- Advanced Material Technologies Application and Research Center, Eskişehir Osmangazi University, Eskişehir, Turkey
- Translational Medicine Research and Clinical Center, Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Physics, Faculty of Science and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Demet Erdönmez
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Düzce University, Düzce, Turkey
| |
Collapse
|
3
|
Raszewski Z, Chojnacka K, Mikulewicz M, Alhotan A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4363. [PMID: 37374547 DOI: 10.3390/ma16124363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The creation of the denture base material with bioactive properties that releases ions and produces hydroxyapatite. METHODS Acrylic resins were modified by the addition of 20% of four types of bioactive glasses by mixing with powders. Samples were subjected to flexural strength (1, 60 days), sorption and solubility (7 days), and ion release at pH 4 and pH 7 for 42 days. Hydroxyapatite layer formation was measured using infrared. RESULTS Biomin F glass-containing samples release fluoride ions for a period of 42 days (pH = 4; Ca = 0.62 ± 0.09; P = 30.47 ± 4.35; Si = 22.9 ± 3.44; F = 3.1 ± 0.47 [mg/L]). The Biomin C (contained in the acrylic resin releases (pH = 4; Ca = 41.23 ± 6.19; P = 26.43 ± 3.96; Si = 33.63 ± 5.04 [mg/L]) ions for the same period of time. All samples have a flexural strength greater than 65 MPa after 60 days. CONCLUSION The addition of partially silanized bioactive glasses allows for obtaining a material that releases ions over a longer period of time. CLINICAL SIGNIFICANCE This type of material could be used as a denture base material, helping to preserve oral health by preventing the demineralization of the residual dentition through the release of appropriate ions that serve as substrates for hydroxyapatite formation.
Collapse
Affiliation(s)
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Medical University of Wroclaw, 50-367 Wroclaw, Poland
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh P.O. Box 12372, Saudi Arabia
| |
Collapse
|
4
|
Surface Modification to Modulate Microbial Biofilms-Applications in Dental Medicine. MATERIALS 2021; 14:ma14226994. [PMID: 34832390 PMCID: PMC8625127 DOI: 10.3390/ma14226994] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in materials science and nanotechnology has led to the development of advanced materials with multifunctional properties. Dental medicine has benefited from the design of such materials and coatings in providing patients with tailored implants and improved materials for restorative and functional use. Such materials and coatings allow for better acceptance by the host body, promote successful implantation and determine a reduced inflammatory response after contact with the materials. Since numerous dental pathologies are influenced by the presence and activity of some pathogenic microorganisms, novel materials are needed to overcome this challenge as well. This paper aimed to reveal and discuss the most recent and innovative progress made in the field of materials surface modification in terms of microbial attachment inhibition and biofilm formation, with a direct impact on dental medicine.
Collapse
|
5
|
Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel) 2020; 12:E2299. [PMID: 33049984 PMCID: PMC7599472 DOI: 10.3390/polym12102299] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
A wide range of polymers are commonly used for various applications in prosthodontics. Polymethyl methacrylate (PMMA) is commonly used for prosthetic dental applications, including the fabrication of artificial teeth, denture bases, dentures, obturators, orthodontic retainers, temporary or provisional crowns, and for the repair of dental prostheses. Additional dental applications of PMMA include occlusal splints, printed or milled casts, dies for treatment planning, and the embedding of tooth specimens for research purposes. The unique properties of PMMA, such as its low density, aesthetics, cost-effectiveness, ease of manipulation, and tailorable physical and mechanical properties, make it a suitable and popular biomaterial for these dental applications. To further improve the properties (thermal properties, water sorption, solubility, impact strength, flexural strength) of PMMA, several chemical modifications and mechanical reinforcement techniques using various types of fibers, nanoparticles, and nanotubes have been reported recently. The present article comprehensively reviews various aspects and properties of PMMA biomaterials, mainly for prosthodontic applications. In addition, recent updates and modifications to enhance the physical and mechanical properties of PMMA are also discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|