1
|
Mora-Solarte D, Jimenez R, Calderón-Delgado I, Duarte-Ruiz A, Brinkmann M, Velasco-Santamaría Y. Variability of Bile Baseline Excitation-emission Fluorescence of Two Tropical Freshwater Fish Species. J Fluoresc 2024:10.1007/s10895-024-03871-x. [PMID: 39264519 DOI: 10.1007/s10895-024-03871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024]
Abstract
The quantification of pollutant metabolites in fish bile is an efficient approach to xenobiotic pollution monitoring in freshwaters since these measurements directly address exposure. Fluorescence excitation-emission matrix spectroscopy (EEMS) has demonstrated to be a highly specific and cost-effective technique for polycyclic aromatic hydrocarbon (PAH) and PAH-metabolite identification and quantification. EEMS ability to quantify these compounds strongly depends on the intensity and variability of the bile baseline fluorescence (BBF). We found large differences in BBF among Aequidens metae (AME) individuals and of these with Piaractus orinoquensis (PIO). Moreover, BBF was large enough that solvent dilutions of over 1:400 were needed to avoid inner filter effects. We used parallel factor analysis (PARAFAC) to model the intra- and inter-species BBF variability. PARAFAC successfully decomposed the EEMS set into three fluorophores present in all samples, although in concentrations spreading over ~ 3 orders of magnitude. One of the factors was identified as tryptophan. Tryptophan and Factor 2 were covariant and much more abundant in AME than in PIO, while Factor 3 was ~ 6 times more abundant in PIO than in AME. Also, tryptophan was ~ 10x more abundant in AME specimens immediately caught in rivers than in their laboratory-adapted peers. The PARAFAC decomposition effectiveness was confirmed by the positive proportionality of scores to dilution ratios. A large inner filter indicates that Factor 2 is as strong a light absorber as tryptophan. Our results stress the need to include bile matrix variable components for the detection and quantification of pollutant metabolites using PARAFAC.
Collapse
Affiliation(s)
- Diego Mora-Solarte
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación en Biotecnología y Toxicología Acuática y Ambiental (BioTox), Universidad de los Llanos, Villavicencio, Meta, 500017, Colombia
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia - Bogota, Bogota, DC, 111321, Colombia
| | - Rodrigo Jimenez
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia - Bogota, Bogota, DC, 111321, Colombia.
| | - Ivonne Calderón-Delgado
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación en Biotecnología y Toxicología Acuática y Ambiental (BioTox), Universidad de los Llanos, Villavicencio, Meta, 500017, Colombia
| | - Alvaro Duarte-Ruiz
- Departamento de Química, Universidad Nacional de Colombia - Bogotá, Bogotá, DC, 111321, Colombia
| | - Markus Brinkmann
- School of Environment and Sustainability and Toxicology Centre and Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Yohana Velasco-Santamaría
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Grupo de Investigación en Biotecnología y Toxicología Acuática y Ambiental (BioTox), Universidad de los Llanos, Villavicencio, Meta, 500017, Colombia
| |
Collapse
|
2
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Qin D, Shen Y, Yang S, Zhang G, Wang D, Li H, Sun J. Whether the Research on Ethanol-Water Microstructure in Traditional Baijiu Should Be Strengthened? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238290. [PMID: 36500382 PMCID: PMC9736648 DOI: 10.3390/molecules27238290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Baijiu is a unique and traditional distilled liquor in China. Flavor plays a crucial rule in baijiu. Up to now, the research on the flavor of baijiu has progressed from the identification of volatile compounds to the research on key aroma compounds, but the release mechanism of these characteristic compounds is still unclear. Meanwhile, volatile compounds account for only a tiny fraction, whereas ethanol and water account for more than 98% of the content in baijiu. By summarizing the ethanol-water hydrogen bond structure in different alcoholic beverages, it was found that flavor compounds can affect the association strength of the ethanol-water hydrogen bond, and ethanol-water can also affect the interface distribution of flavor compounds. Therefore, the research on ethanol-water microstructure in baijiu is helpful to realize the simple visualization of adulteration detection, aging determination and flavor release mechanism analysis of baijiu, and further uncover the mystery of baijiu.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd., Gulin 646523, China
| | - Shiqi Yang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Guihu Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | | | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Imperatore C, Varriale A, Rivieccio E, Pennacchio A, Staiano M, D’Auria S, Casertano M, Altucci C, Valadan M, Singh M, Menna M, Varra M. Spectroscopic Properties of Two 5'-(4-Dimethylamino)Azobenzene Conjugated G-Quadruplex Forming Oligonucleotides. Int J Mol Sci 2020; 21:E7103. [PMID: 32993097 PMCID: PMC7582650 DOI: 10.3390/ijms21197103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Antonio Varriale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Elisa Rivieccio
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Maria Staiano
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Marcello Casertano
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Michela Varra
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| |
Collapse
|