1
|
Rosheen, Sharma S, Utreja D. Salicylic Acid: Synthetic Strategies and Their Biological Activities. ChemistrySelect 2023. [DOI: 10.1002/slct.202204614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rosheen
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| | - Shivali Sharma
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| | - Divya Utreja
- Department of Chemistry College of Basic Sciences and Humanities Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
2
|
Luo J, Zhang Y, Yan Q, Yang G, Zhang Y, Wang H. NaH-promoted one-pot synthesis of 5-amidoimidazoles from arylamines, carbon disulfide and isocyanides. Mol Divers 2023; 27:135-143. [PMID: 35267129 DOI: 10.1007/s11030-022-10413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
A novel, convenient and efficient protocol to access functionalized 5-amidoimidazoles is developed via one-pot synthesis from readily available materials of arylamines, carbon disulfide and isocyanides. The transformation was realized at room temperature and provided 5-amidoimidazoles in moderate to good yields in the presence of NaH. In addition, control experiments indicated that the process might be achieved via the base-induced cyclization of activated methylene isocyanides with N,N-disubstituted thioureas that produced from the reaction of amines and carbon disulfide.
Collapse
Affiliation(s)
- Jie Luo
- College of Yuanpei, College of Chemistry and Chemical Engineering, College of Life Sciences, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, People's Republic of China
| | - Qiuxia Yan
- College of Yuanpei, College of Chemistry and Chemical Engineering, College of Life Sciences, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Guo Yang
- College of Yuanpei, College of Chemistry and Chemical Engineering, College of Life Sciences, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yaohong Zhang
- College of Yuanpei, College of Chemistry and Chemical Engineering, College of Life Sciences, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China.
| | - Hai Wang
- College of Yuanpei, College of Chemistry and Chemical Engineering, College of Life Sciences, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Suárez-García J, Cano-Herrera MA, María-Gaviria A, Osorio-Echeverri VM, Mendieta-Zerón H, Arias-Olivares D, Benavides-Melo J, García-Sánchez LC, García-Ortíz J, Becerra-Buitrago A, Valero-Rojas J, Rodríguez-González M, García-Eleno MA, Cuevas-Yañez E. Synthesis, characterization, in-vitro biological evaluation and theoretical studies of 1,2,3-triazoles derived from triclosan as Difenoconazole analogues. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Cervantes-Reyes A, García-Vanegas JJ, Méndez-Barbosa YN, Pinzón-Godoy JA, Benavides-Melo J, Martínez-Otero D, Unnamatla MVB, Cuevas-Yañez E. Synthesis, crystal structure and theoretical studies of 1-sulfonyl-1,2,3-triazole derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Yadav P, Kaushik C, Kumar M, Kumar A. Phthalimide/Naphthalimide containing 1,2,3-triazole hybrids: Synthesis and Antimicrobial Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Cedillo-Cruz A, Martínez-Otero D, Barroso-Flores J, Cuevas-Yañez E. α-(1,2,3-Triazolyl)-acetophenone: Synthesis and theoretical studies of crystal and 2,4-dinitrophenylhydrazine cocrystal structures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells. Neurotox Res 2022; 40:1360-1368. [PMID: 35867270 DOI: 10.1007/s12640-022-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Neuroblastoma is the most common solid tumor in children. New treatment approaches are needed because of the harmful side effects and costs of the methods used in the treatment of neuroblastoma. Medicinal and aromatic plants are important for new treatment approaches due to their minimal side effects and economic advantages. Therefore, the present study was carried out to examine the cytotoxic effect of Chaerophyllum macropodum extract on human neuroblastoma (SH-SY5Y) and fibroblast (HDFa) cell lines. 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release (LDH) assays were used to determine the cytotoxic effect of C. macropodum. The extracts were analyzed for their phenolic content by HPLC-PDA. Major components were determined as 63.600% o-coumaric acid, 15.606% catechine hydrate, 8.713% rosmarinic acid, 4.376% clorogenic acid, and 3.972% salicylic acid. The obtained results from cytotoxicity testing revealed that C. macropodum exerted a significant cytotoxic effect on human neuroblastoma cells at all tested concentrations (p < 0.05). But it did not lead to any cytotoxic potential on human fibroblasts. As a result, the obtained data clearly revealed C. macropodum exerted a selective cytotoxic action on neuroblastoma cells for the first time.
Collapse
|
8
|
Al-Qahtani SD, Snari RM, Bayazeed A, Alnoman RB, Hossan A, Alsoliemy A, El-Metwaly NM. Synthesis, characterization and self-assembly of novel fluorescent alkoxy-substituted 1, 4-diarylated 1, 2, 3-triazoles organogelators. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Yang W, Xuan B, Li X, Si H, Chen A. Therapeutic potential of 1,2,3-triazole hybrids for leukemia treatment. Arch Pharm (Weinheim) 2022; 355:e2200106. [PMID: 35532286 DOI: 10.1002/ardp.202200106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022]
Abstract
Leukemia, a hematological malignancy originating from the bone marrow, is the principal cancer of childhood. In recent decades, improved remission rates and survival of patients with leukemia have been achieved due to significant breakthroughs in the treatment. However, chemoresistance and relapse are common, creating an urgent need for the search for novel pharmaceutical interventions. 1,2,3-Triazole is one of the most fascinating pharmacophores in the discovery of new drugs, and several 1,2,3-triazole derivatives have already been used in clinics or are under clinical evaluation for the treatment of cancers. In particular, 1,2,3-triazole hybrids could suppress tumor proliferation, invasion, and metastasis by inhibiting enzymes, proteins, and receptors in cancer cells, revealing their potential as putative antileukemic agents. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential antileukemic activity, focusing on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from January 2017 to January 2022.
Collapse
Affiliation(s)
- Wenchao Yang
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Bixia Xuan
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Xiaofang Li
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Haiyan Si
- Department of Gastroenterology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Aiping Chen
- Emergency Department, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
10
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Yang B, Kong Y, Hu Y, Zhuang Y, Wang N, Zhang J, Cai J, Dong C. Synthesis and Primary Biological Evaluation of Triazole‐Modified Picroside II Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Yang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Yuanfang Kong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Yulong Hu
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Yan Zhuang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Ning Wang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Jingyu Zhang
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
| | - Juntao Cai
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| | - Chunhong Dong
- Henan University of Chinese Medicine Zhengzhou 450046 Henan China E-mail: chunhong
- Henan Polysaccharide Research Center Zhengzhou 450046 Henan China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research Zhengzhou 450046 Henan China
| |
Collapse
|
12
|
Nehra N, Tittal RK, Ghule VD. 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and Studies (DNA Binding, Antimicrobial, Molecular Docking, ADME, and DFT). ACS OMEGA 2021; 6:27089-27100. [PMID: 34693129 PMCID: PMC8529673 DOI: 10.1021/acsomega.1c03668] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
A new series of 1,2,3-triazole hybrids containing either 2- or 4-hydroxyphenyl benzothiazole (2- or 4-HBT) and naphthalen-1-ol or 8-hydroxyquinoline (8-HQ) was synthesized in high yields and fully characterized. In vitro DNA binding studies with herring fish sperm DNA (hs-DNA) showed that quinoline- and 2-HBT-linked 1,2,3-triazoles of shorter alkyl linkers such as 6a are better with a high binding affinity (3.90 × 105 L mol-1) with hs-DNA as compared to naphthol- and 4-HBT-linked 1,2,3-triazoles bound to longer alkyl linkers. Molecular docking of most active 1,2,3-triazoles 6a-f showed high binding energy of 6a (-8.7 kcal mol-1). Also, compound 6a displayed considerable antibacterial activity and superior antifungal activity with reference to ciprofloxacin and fluconazole, respectively. The docking results of the fungal enzyme lanosterol 14-α-demethylase showed high binding energy for 6a (-9.7 kcal mol-1) involving dominating H-bonds, electrostatic interaction, and hydrophobic interaction. The absorption, distribution, metabolism, and excretion (ADME) parameter, Molinspiration bioactivity score, and the PreADMET properties revealed that most of the synthesized 1,2,3-triazole molecules possess desirable physicochemical properties for drug-likeness and may be considered as orally active potential drugs. The electrophilicity index and chemical hardness properties were also studied by density functional theory (DFT) using the B3LYP/6-311G(d,p) level/basis set.
Collapse
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| | - Vikas D. Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136119, India
| |
Collapse
|
13
|
Gaikwad NB, Bansode S, Biradar S, Ban M, Srinivas N, Godugu C, Yaddanapudi VM. New 3-(1H-benzo[d]imidazol-2-yl)quinolin-2(1H)-one-based triazole derivatives: Design, synthesis, and biological evaluation as antiproliferative and apoptosis-inducing agents. Arch Pharm (Weinheim) 2021; 354:e2100074. [PMID: 34346099 DOI: 10.1002/ardp.202100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
A series of 1,2,3-triazole derivatives based on the quinoline-benzimidazole hybrid scaffold was designed, synthesized, and screened against a panel of NCI-60 humanoid cancer cell lines for in vitro cytotoxicity evaluation, which revealed that compound Q6 was the most potent cytotoxic agent with excellent GI50 , TGI, and LC50 values on multiple cancer cell lines. Q6 was tested further on the BT-474 breast cancer line to evaluate the mechanism of action. Preliminary screening studies based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that compound Q6 had an excellent antiproliferative effect against human breast cancer cells, BT-474, with IC50 values of 0.59 ± 0.01 μM. The detailed study based on the acridine orange/ethidium bromide staining (AO/EB) and the 4',6-diamidino-2-phenylindole (DAPI) assay suggested that the antiproliferative activity shown was due to the induction of apoptosis on exposure to Q6. Further, DCFDA staining showed the generation of reactive oxygen species, altering the mitochondrial potential and leading to the initiation of apoptosis. This was further supported by JC-1 staining, indicating that this scaffold can contribute to the development of more potent derivatives.
Collapse
Affiliation(s)
- Nikhil B Gaikwad
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sapana Bansode
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shankar Biradar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mayuri Ban
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Nanduri Srinivas
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Venkata M Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
14
|
Fekri A, Keshk EM, Khalil AGM, Taha I. Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol Divers 2021; 26:781-800. [PMID: 33683569 DOI: 10.1007/s11030-021-10184-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
5-Aminopyrazole serves as a vital precursor for several biologically active pyrazoloazines, including pyrazolopyridine, pyrazolopyrimidine, and pyrazolotriazine, as well as Schiff bases, thiourea, and phthalimide derivatives. In this study, we structurally characterized novel pyrazole derivatives by spectral IR, 1H and 13C NMR, and MASS spectroscopy. We also evaluated antioxidant activity of various derivatives using ABTS and DPPH methods and cytotoxicity in the hepatocellular carcinoma Hep-G2 cells by SRB assay. The most potent antitumor molecules were 5-aminopyrazole derivative 3, chloroacetanilide derivative 8, maleimide derivative 10a, pyrazolopyrimidine 16, and enamine 19, with IC50 values of 41, 3.6, 37, 24.4, and 17.7 μM, respectively. Complementary computational studies predicted QSAR and bioactivity of these molecules. Interestingly, the most effective compounds were also predicted to be kinase inhibitors; in addition, molecular docking with liver receptors (3MBG, 4XCU, and 4G9C) predicted promising interactions.
Collapse
Affiliation(s)
- Ahmed Fekri
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt.
| | - Eman M Keshk
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Abdel-Galil M Khalil
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| | - Israa Taha
- Chemistry Department, Faculty of Science, Mansoura University, 25 El Gomhouria St, Mansoura, Dakahlia Governorate, 35516, Egypt
| |
Collapse
|
15
|
Al Sheikh Ali A, Khan D, Naqvi A, Al-blewi FF, Rezki N, Aouad MR, Hagar M. Design, Synthesis, Molecular Modeling, Anticancer Studies, and Density Functional Theory Calculations of 4-(1,2,4-Triazol-3-ylsulfanylmethyl)-1,2,3-triazole Derivatives. ACS OMEGA 2021; 6:301-316. [PMID: 33458482 PMCID: PMC7807778 DOI: 10.1021/acsomega.0c04595] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 05/07/2023]
Abstract
New conjugates of substituted 1,2,3-triazoles linked to 1,2,4-triazoles were synthesized starting from the appropriate S-propargylated 1,2,4-triazoles 7 and 8. Ligation of 1,2,4-triazoles to the 1,2,3-triazole core was performed through Cu(I)-catalyzed cycloaddition of 1,2,4-triazole-based alkyne side chain 7 and/or 8 with several un/functionalized alkyl- and/or aryl-substituted azides 9-15 to afford the desired 1,4-disubstituted 1,2,3-triazoles 16-27, using both classical and microwave methods. After their spectroscopic characterization (infrared, 1H, 13C nuclear magnetic resonance, and elemental analyses), an anticancer screening was carried out against some cancer cell lines including human colon carcinoma (Caco-2 and HCT116), human cervical carcinoma (HeLa), and human breast adenocarcinoma (MCF-7). The outcomes of this exploration revealed that compounds 17, 22, and 25 had a significant anticancer activity against MCF-7 and Caco-2 cancer cell lines with IC50 values of 0.31 and 4.98 μM, respectively, in relation to the standard reference drug, doxorubicin. Enzyme-docking examination was executed onto cyclin-dependent kinase 2; a promising aim for cancer medication. Synthesized compounds acquiring highest potency showcased superior interactions with the active site residue of the target protein and exhibited minimum binding energy. Finally, the density functional theory (DFT) calculations were carried out to confirm the outcomes of the molecular docking and the experimental findings. The chemical reactivity descriptors such as softness (δ), global hardness (η), electronegativity (χ), and electrophilicity were calculated from the levels of the predicted frontier molecular orbitals and their energy gap. The DFT results and the molecular docking calculation results explained the activity of the most expectedly active compounds 17, 22, and 25.
Collapse
Affiliation(s)
- Adeeb Al Sheikh Ali
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Daoud Khan
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Arshi Naqvi
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Fawzia Faleh Al-blewi
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Nadjet Rezki
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Mohamed Reda Aouad
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Mohamed Hagar
- Chemistry
Department, College of Sciences, Yanbu, Taibah University, Yanbu 30799, Saudi Arabia
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| |
Collapse
|