1
|
Zhang X, Gao M, Dong Y, Pan L, Zhai M, Jin L. Novel Aminocoumarin-Based Schiff Bases: High Antifungal Activity in Agriculture. Chem Biodivers 2024:e202401390. [PMID: 39169237 DOI: 10.1002/cbdv.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Structural modification is an effective way to improve the antifungal activity of natural products and has been widely used in the development of novel fungicides. In this work, a series of aminocoumarin-based Schiff bases were synthesized and characterized by 1H-NMR, 13C NMR and HR-MS spectra. The in vitro inhibition activity of all compounds was tested against four phytopathogenic fungi (Alternaria solani, Fusarium oxysporum, Botrytis cinerea, and Alternaria alternata) using the mycelial growth rate method. The results showed that most of the target compounds exhibited significant antifungal activities. In particular, compounds 5b, 5c, 5d, 5h, 5n, 7c, 7n, and 7p exhibited more effective antifungal activity than commercially available fungicides, chlorothalonil and azoxystrobin. The structure-activity relationship revealed that the electron-withdrawing groups with more electronegativity introduced at the C-3 position were effective in improving the inhibitory activity and that halogenated benzaldehydes would be necessary in the preparation of Schiff bases. The compound 5n against Fusarium oxysporum (EC50=8.73 μg/mL) and the compound 7p against Alternaria alternata (EC50=26.25 μg/mL) were much better than the positive controls (chlorothalonil and azoxystrobin). Therefore, compounds 5n and 7p could serve as promising lead compounds for the development of novel broad-spectrum fungicides, which could be useful for applications in the agriculture.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ming Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yajie Dong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Manjun Zhai
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| |
Collapse
|
2
|
Coskun A, Kayhan H, Senturk F, Esmekaya MA, Canseven AG. The Efficacy of Electrochemotherapy with Dacarbazine on Melanoma Cells. Bioelectricity 2024; 6:118-125. [PMID: 39119570 PMCID: PMC11305008 DOI: 10.1089/bioe.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Electrochemotherapy (ECT) involves locally applying electrical pulses to permeabilize cell membranes, using electroporation (EP). This process enhances the uptake of low-permeant chemotherapeutic agents, consequently amplifying their cytotoxic effects. In melanoma treatment, dacarbazine (DTIC) is a cornerstone, but it faces limitations because of poor cell membrane penetration, necessitating the use of high doses, which, in turn, leads to increased side effects. In our study, we investigated the effects of DTIC and EP, both individually and in combination, on the melanoma cell line (SK-MEL-30) as well as human dermal fibroblasts (HDF) using in vitro assays. First, the effects of different DTIC concentrations on the viability of SK-MEL-30 and HDF cells were determined, revealing that DTIC was more effective against melanoma cells at lower concentrations, whereas its cytotoxicity at 1000 μM was similar in both cell types. Next, an ideal electric field strength of 1500 V/cm achieved a balance between permeability (84%) and melanoma cell viability (79%), paving the way for effective ECT. The combined DTIC-EP (ECT) application reduced IC50 values by 2.2-fold in SK-MEL-30 cells and 2.7-fold in HDF cells compared with DTIC alone. In conclusion, ECT not only increased DTIC's cytotoxicity against melanoma cells but also affected healthy fibroblasts. These findings emphasize the need for cautious, targeted ECT management in melanoma therapy.
Collapse
Affiliation(s)
- Alaaddin Coskun
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Meric Arda Esmekaya
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
3
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
4
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Exploring the Interaction Between the Newly Designed Antitumor Zn(II) Complex and CT-DNA/BSA: Spectroscopic Methods, DFT Computational Analysis, and Docking Simulation. Appl Biochem Biotechnol 2023; 195:6276-6308. [PMID: 36856984 DOI: 10.1007/s12010-023-04394-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
A new zinc(II) complex formulated as [Zn(pipr-ac)2], where pipr-ac stands for piperidineacetate, was synthesized and structurally identified with the help of experimental and DFT methods. Frontier molecular orbital (FMO) analysis demonstrated that the new complex has higher biological activity compared to the free ligand. Molecular electrostatic potential (MEP) showed the nitrogen atoms and oxygen of carbonyl groups are the active sites of Zn(II) compound. Also, natural bond orbital (NBO) analysis confirmed the charge transfer from the ligating atoms to the metal ion and formation of four coordinated Zn(II) complex. MTT assay illustrated a noticeable cytotoxic activity of the new zinc(II) complex compared to cisplatin on K562 cell line. The CT-DNA and serum albumin (SA) binding of the Zn(II) complex were explored individually. In this regard, UV-Vis spectroscopy and florescence titration revealed the occurrences of fluorescence quenching of CT-DNA/SA by metal compound via static mechanism and creation of hydrogen bonds and van der Waals interactions between them. The binding was further confirmed by viscosity measurement and gel electrophoresis assay for CT-DNA and circular dichroism spectroscopy for SA. Moreover, molecular docking simulation demonstrated that the new compound binds mainly through hydrogen bonds to the groove of DNA and hydrogen bonds and van der Waals interactions to site I of SA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
5
|
Ugwu DI, Conradie J. Metal complexes derived from bidentate ligands: Synthesis, catalytic and biological applications. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
7
|
Vijayapritha S, Nithya P, Viswanathamurthi P, Raju S, Linert W. Efficient ruthenium(II) complex catalyzed N-alkylation of amines and β-alkylation of secondary alcohol via borrowing hydrogen methodology. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules 2023; 28:molecules28041959. [PMID: 36838947 PMCID: PMC9965607 DOI: 10.3390/molecules28041959] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Since the accidental discovery of the anticancer properties of cisplatin more than half a century ago, significant efforts by the broad scientific community have been and are currently being invested into the search for metal complexes with antitumor activity. Coordination compounds of transition metals such as platinum (Pt), ruthenium (Ru) and gold (Au) have proven their effectiveness as diagnostic and/or antiproliferative agents. In recent years, experimental work on the potential applications of elements including lanthanum (La) and the post-transition metal gallium (Ga) in the field of oncology has been gaining traction. The authors of the present review article aim to help the reader "catch up" with some of the latest developments in the vast subject of coordination compounds in oncology. Herewith is offered a review of the published scientific literature on anticancer coordination compounds of Pt, Ru, Au, Ga and La that has been released over the past three years with the hope readers find the following article informative and helpful.
Collapse
|
9
|
G S, K D, P S, N B. DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: as Covid-19 inhibitor. J Biomol Struct Dyn 2023; 41:12997-13014. [PMID: 36752337 DOI: 10.1080/07391102.2023.2175039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023]
Abstract
In this investigation, we synthesized Schiff bases 2-(2-methoxyphenoxy)-N-(4-methylbenzylidene)ethanamine, N-(4-methoxybenzylidene)-2-(2-methoxyphenoxy)ethanamine and 2-(2-methoxyphenoxy)-N-(4-nitrobenzylidene)ethanamine from 2-(2-methoxyphenoxy)ethanamine and various aromatic aldehydes by the environmentally friendly sonication method. The B3LYP method with a 6-311++G (d, p) basis set was used in the DFT calculation to obtain the optimized structure of the Schiff base MPEA-NIT. The compounds were tested in vitro for inhibition of bacterial growth (disc well method) and inhibition of α-amylase (starch-iodine method). The compounds tested showed inhibitory activities. In addition, they were subjected to PASS analysis, drug likeness, and bioactivity score predictions using online software. To confirm the experimental findings, molecular docking analyses of synthesized compounds on α-amylase (PDB ID: 1SMD), tRNA threonylcarbamoyladenosine (PDB ID: 5MVR), glycosyl transferase (PDB ID: 6D9T), and peptididoglycan D,D-transpeptidase (PDB ID: 6HZQ) were performed. The emergence of a new coronavirus epidemic necessitates the development of antiviral medications (SARS-CoV-2). Docking active site interactions were investigated to predict compounds' activity against COVID-19 by binding with the SARS-CoV-2 (PDB ID: 6Y84).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saranya G
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| | | | - Shanmugapriya P
- Department of Chemistry, KSR College of Engineering, Thiruchengode, India
| | - Bhuvaneshwari N
- Department of Chemistry, Chikkaiah Naicker College, Erode, India
| |
Collapse
|
10
|
Alkis ME, Buldurun K, Alan Y, Turan N, Altun A. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells. Chem Biodivers 2023; 20:e202200710. [PMID: 36601965 DOI: 10.1002/cbdv.202200710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Yusuf Alan
- Department of Molecular Biology, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Ayhan Altun
- Department of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey
| |
Collapse
|
11
|
Pharmacological Aspects of Schiff Base Metal Complexes: A Critical Review. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Ramírez-Coronel AA, Mezan SO, Patra I, Sivaraman R, Riadi Y, Khakberdiev S, Lafta HA, Abosaooda M, Turki Jalil A, Fakri Mustafa Y. A green chemistry approach for oxidation of alcohols using novel bioactive cobalt composite immobilized on polysulfone fibrous network nanoparticles as a catalyst. Front Chem 2022; 10:1015515. [PMID: 36605117 PMCID: PMC9807923 DOI: 10.3389/fchem.2022.1015515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, cobalt composite immobilized on polysulfone fibrous network nanoparticles (CCPSF NPs) were synthesized in a controllable and one-step way under microwave-assisted conditions. The structure of CCPSF NPs was characterized by SEM images (for morphology and size distribution), TGA (for thermal stability), BET technique (for the specific surface area), FT-IR spectroscopy (for relation group characterization), and XRD patterns (for crystal size). The oxidation of the primary and secondary alcohols to aldehyde and ketone was investigated using synthesized CCPSF NPs under solvent-free microwave-assisted conditions, and high oxidizing activity was observed. In addition to oxidation properties, the anticancer activity of the synthesized CCPSF NPs in breast cancer was evaluated by the MTT method , and significant results were obtained.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Health and Behavior Research Group (HBR), Cuenca, Ecuador
| | - Salim Oudah Mezan
- General Directorate of Education in Al-Muthanna Governorate, Ministry of Education, Baghdad, Iraq
| | - Indrajit Patra
- An Independent Researcher, NIT Durgapur, Durgapur, West Bengal, India
| | - Ramaswamy Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shukhrat Khakberdiev
- Head of the Chemistry Department, Jizzakh Polytechnic Institute, Jizzakh, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq,*Correspondence: Yasser Fakri Mustafa, ; Abduladheem Turki Jalil,
| |
Collapse
|
13
|
Bute B, Alkis ME. Anticancer activity of methotrexate in electrochemotherapy and electrochemotherapy plus ionizing radiation treatments in human breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:28. [PMID: 36459220 DOI: 10.1007/s12032-022-01891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Traditional cancer treatments, such as chemotherapy and radiotherapy have several limitations. Therefore, their performance must be enhanced with combined methods. The purpose of this study is to investigate both the efficacy of electroporation (EP) on the activity of methotrexate (MTX) and the combined treatment of electrochemotherapy (ECT) + ionizing radiation (IR) in MCF-7 cancer cells. Different treatment techniques, such as EP, MTX, MTX + EP (ECT), 140 kV X-ray alone (IR_140kV), 500 kV X-ray alone (IR_500kV), ECT + IR_140kV and ECT + IR_500kV, were applied to cancer cells. Eight electric pulse trains with square wave (800 V/cm, 100 µs and 1 Hz) were used in EP and ECT applications. The MTT assay was used to assess the efficacy of the therapies used. When the EP, MTX, ECT, IR_140kV, and IR_500kV treatment groups were compared to the control group, there was a significant reduction in MCF-7 cancer cells viability (p < 0.05). ECT was the most effective of these treatments, decreasing viability of cancer cells to 58.78%. The ECT + IR_140kV and ECT + IR_500kV groups were compared to the ECT group to examine the impact of X-ray radiation on ECT treatment. When compared to the ECT alone group, both groups that exposed to X-rays after ECT had a significant decrease in cell viability (p < 0.05). Furthermore, viability of MCF-7 cells reduced to 46.38% in the ECT + IR_140kV group and 35.89% in the ECT + IR_500kV group. In conclusion, the study shows that the cytotoxicity of MTX is significantly increased in ECT treatment compared to standard chemotherapy (p < 0.05). In addition, ECT + IR combined therapy application is much more effective than MTX or ECT treatments alone.
Collapse
Affiliation(s)
- Burcu Bute
- Department of Nuclear Energy and Energy Systems, Faculty of Engineering and Architecture, Muş Alparslan University, Muş, Turkey
| | - Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Guzeltepe, 49250, Muş, Turkey.
| |
Collapse
|
14
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
15
|
Jain S, Rana M, Sultana R, Mehandi R, Rahisuddin. Schiff Base Metal Complexes as Antimicrobial and Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shruti Jain
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Schiff base containing fluorouracil and its M(II) complexes: Synthesis, characterization, cytotoxic and antioxidant activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Savcı A, Buldurun K, Alkış ME, Alan Y, Turan N. Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:172. [PMID: 35972705 DOI: 10.1007/s12032-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
In this study, Schiff base ligand was obtained from the condensation reaction of benzene-1,2-diamine and 5-fluoropyrimidine-2,4(1H,3H)-dione (5-FU). Metal(II) complexes were synthesized with Fe(II), Co(II) and Ni(II) chloride salts. The synthesized ligand and metal complexes were characterized by FT-IR, UV-vis, 1H-13C NMR, elemental analyses, mass spectroscopy, magnetic moments, molar conductivity and thermogravimetric analysis studies. With the help of different techniques reveal Fe(II), Co(II) and Ni(II) complexes have exhibited tetrahedral and octahedral geometry. Ligand acted as bidentate and it binds metal(II) ions through deprotonated-NH, imine-N atom and carbonyl-O atom, respectively. DPPH, ABTS, FRAP, CUPRAC and total antioxidant activity methods were used to determine the antioxidant properties of ligand and metal complexes. According to the results, the synthesized compounds showed very high antioxidant activity compared to 5-FU. The cytotoxicities of the synthesized compounds were performed on MCF-7 (human breast cancer) and L-929 (fibroblast) cell lines using the MTT assay. In addition, the effect of electroporation (EP) on the cytotoxicity of the compounds was investigated. Our results demonstrated that novel Co(II) and Ni(II) complexes show potential as new anticancer agents and ECT may be a viable treatment option for breast cancer.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey.
| | - Kenan Buldurun
- Department of Medical Services and Techniques, Health Services Vocational School, Mus Alparslan University, 49250, Mus, Turkey
| | - Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Mus Alparslan University, 49250, Mus, Turkey
| | - Yusuf Alan
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, 49250, Mus, Turkey
| |
Collapse
|
18
|
Half-sandwich ruthenium(II)(η6-p-cymene) complexes: Syntheses, characterization, transfer hydrogenation reactions, antioxidant and enzyme inhibitory activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Hojjati A, Mansournia M. Synthesis, characterization, theoretical study and anticancer application of a new asymmetric ligand, N‐trans‐cinnamylidene‐1,2‐phenylenediamine, and its complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmad Hojjati
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| | - Mohammadreza Mansournia
- Department of Inorganic Chemistry, Faculty of Chemistry University of Kashan Kashan I. R. Iran
| |
Collapse
|
20
|
Wang YF, Tang JX, Mo ZY, Li J, Liang FP, Zou HH. The strong in vitro and vivo cytotoxicity of three new cobalt(II) complexes with 8-methoxyquinoline. Dalton Trans 2022; 51:8840-8847. [PMID: 35621165 DOI: 10.1039/d2dt01310j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three new cobalt(II) complexes, [Co(MQL)2Cl2] (CoCl), [Co(MQL)2Br2] (CoBr), and [Co(MQL)2I2] (CoI), bearing 8-methoxyquinoline (MQL) have been designed for the first time. MTT assays showed that CoCl, CoBr, and CoI exhibit much better antiproliferative activities than cisplatin toward cisplatin-resistant SK-OV-3/DDP and SK-OV-3 ovarian cancer cells, with IC50 values of as low as 0.32-5.49 μM. Further, CoCl and CoI can regulate autophagy-related proteins in SK-OV-3/DDP cells and, therefore, they can induce primarily autophagy-mediated cell apoptosis in the following order: CoCl > CoI. The different antiproliferative activities of the MQL complexes CoCl, CoBr, and CoI could be correlated with the lengths of their Co-X bonds, which adopted the following order: CoI > CoBr > CoCl. The 8-HOMQ complexes CoCl (ca. 60.1%) and CoI (ca. 48.8%) also showed potent in vivo anticancer effects after 15 days of treatment. In summary, the MQL ligand highly enhances the antiproliferative activities of cobalt(II) complexes in comparison to other previously reported 8-hydroxyquinoline metal complexes.
Collapse
Affiliation(s)
- Yu-Feng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Ji-Xia Tang
- School of Foreign Language and International Business, Guilin University of Aerospace Technology, Guilin, 541004, P. R. China
| | - Zai-Yong Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
21
|
Sahni T, Sharma S, Verma D, Kaur H, Kaur A. Synthesis and in vitro Fungitoxic Evaluation of Syringaldehyde Schiff Bases and β-Lactams. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2057142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tanvi Sahni
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Sunita Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Diksha Verma
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Harleen Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amanpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
22
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Nath BD, Islam MM, Karim MR, Rahman S, Shaikh MAA, Georghiou PE, Menelaou M. Recent Progress in Metal‐Incorporated Acyclic Schiff‐Base Derivatives: Biological Aspects. ChemistrySelect 2022. [DOI: 10.1002/slct.202104290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bikash Dev Nath
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Monarul Islam
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Rezaul Karim
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Shofiur Rahman
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | - Md. Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
- Department of Chemistry University of Dhaka Dhaka 1000 Bangladesh
| | - Paris E. Georghiou
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | | |
Collapse
|
24
|
Alkis ME, Akdag MZ, Kandemir I. Influence of extremely low-frequency magnetic field on chemotherapy and electrochemotherapy efficacy in human Caco-2 colon cancer cells. Electromagn Biol Med 2022; 41:177-183. [PMID: 35261297 DOI: 10.1080/15368378.2022.2046047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although chemotherapy (CT) has some adverse effects on healthy tissues and cells, it is widely preferred for treating patients with cancer. Drug resistance is one of the major impediments to successful cancer treatment. Electrochemotherapy (ECT) is a technique where cancer cells are rendered permeable to medications. Thanks to this permeability, the dose of the medication required for cancer treatment decreases. Our aim in this study is to examine the effects of short-term extremely low-frequency magnetic fields (ELF-MFs) on CT and ECT treatments in Caco-2 colon cancer cells. The Caco-2 cancer cells were treated with 5-fluorouracil (5-FU, 50 µM) and ECT (strength:1125 V/cm, duration:100 µs, frequency:1 Hz), alone as well as in combinations with ELF-MF (4 mT, 10 min). MTT assay was used to determine the efficacy of the treatments. Our findings in the study showed that ECT was much more successful than 5-FU treatment alone in Caco-2 colon cancer cells. Application of 4 mT ELF-MF after CT significantly increased the viability of the Caco-2 cancer cells compared to the CT group alone (p < .05). An increase in the viability of cells treated with 4 mT after ECT was observed compared to ECT alone. Similarly, there was an increase in the viability of cells treated with MF prior to ECT treatment (p < .05). The results show that exposure to ELF-MF at 4 mT flux density significantly reduces CT and ECT treatment efficacy in Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
25
|
Synthesis and biological evaluation of a new chalconate Co (II/III) complex with cytotoxic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Khatkar S, Dubey SK, Saraf P, Bhardwaj JK, Kumar S, Kumar V, Singh G, Shayoraj. Ruthenium(II) dimethyl sulphoxide based complexes: A potent inducer of apoptosis. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
27
|
Photocontrolled reversible-deactivation radical polymerization of butyl acrylate mediated by Salen-type CoII complexes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Alkış ME, Turan N, Alan Y, Irtegun Kandemir S, Buldurun K. Effects of electroporation on anticancer activity of 5-FU and newly synthesized zinc(II) complex in chemotherapy-resistance human brain tumor cells. Med Oncol 2021; 38:129. [PMID: 34550481 DOI: 10.1007/s12032-021-01579-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Zn(II) complex of Schiff base derived from the condensation of 4-aminopyrimidine-2(1H)-one with salicylaldehyde was prepared and characterized by various physico-chemical and spectral methods for structure determination. The cytotoxic activity of the Zn(II) complex was investigated in comparison with 5-fluorouracil (5-FU) against two different human brain tumor cell lines (T98G and U118), while primer human dermal fibroblast cells (HDF) was used as control for biocompatibility. Then, the effectiveness of electroporation (EP) on cytotoxic activities of these compounds has been examined. The cytotoxicities of the 5-FU and new Zn(II) complex, alone or in combination with electroporation, were determined by MTT assay. The Zn(II) complex showed good cytotoxicity against T98G and U118 brain tumor cell lines with IC50 = 282.47 and 297.91 μM respectively, while it was safe on HDF healthy cells with IC50 = 826.72 μM. The 5-FU exhibited less cytotoxicity compared to the Zn(II) complex against T98G (IC50 = 382.35 μM) and U118 (IC50 = 396.56 μM) tumor cell lines. The combined application of Zn (II) + EP decreased the IC50 value by 5.96-fold in T98G cells and 4.76-fold in U118 cells. EP showed a similar effect in its combined application with 5-FU, resulting in a decrease of the IC50 value of 4.22-fold in the T98G cells and 3.84-fold in the U118 cells. In a conclusion, the Zn(II) complex exhibited an anticancer potential against both brain tumor cell lines (T98G and U118) and EP greatly increased the cytotoxicity of Zn(II) complex and 5-FU on these chemotherapy-resistant cells.
Collapse
Affiliation(s)
- Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey.
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Yusuf Alan
- Department of Molecular Biology, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Sevgi Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, 21280, Diyarbakır, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| |
Collapse
|
29
|
A Robust and Highly Precise Alternative against the Proliferation of Intestinal Carcinoma and Human Hepatocellular Carcinoma Cells Based on Lanthanum Strontium Manganite Nanoparticles. MATERIALS 2021; 14:ma14174979. [PMID: 34501078 PMCID: PMC8433762 DOI: 10.3390/ma14174979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
In this report, lanthanum strontium manganite at different Sr2+ ion concentrations, as well as Gd3+ or Sm3+ ion substituted La0.5-YMYSr0.5MnO3 (M = Gd and Sm, y = 0.2), have been purposefully tailored using a sol gel auto-combustion approach. XRD profiles confirmed the formation of a monoclinic perovskite phase. FE-SEM analysis displayed a spherical-like structure of the La0.8Sr0.2MnO3 and La0.3Gd0.2Sr0.2MnO3 samples. The particle size of the LSM samples was found to decrease with increased Sr2+ ion concentration. For the first time, different LSM concentrations were inspected for their cytotoxic activity against CACO-2 (intestinal carcinoma cells) and HepG-2 (human hepatocellular carcinoma cells). The cell viability for CACO-2 and HepG-2 was assayed and seen to decrease depending on the Sr2+ ion concentration. Half maximal inhibitory concentration IC50 of CACO-2 cell and HepG-2 cell inhibition was connected with Sr2+ ion ratio. Low IC50 was noticable at low Sr2+ ion content. Such results were correlated to the particle size and the morphology. Indeed, the IC50 of CACO-2 cell inhibition by LSM at a strontium content of 0.2 was 5.63 ± 0.42 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be = 25 ± 2.7 µg/mL. Meanwhile, the IC50 of HepG-2 cell inhibition by LSM at a strontium content of 0.2 was 6.73 ± 0.4 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be 31± 3.1 µg/mL. All LSM samples at different conditions were tested as antimicrobial agents towards fungi, Gram positive bacteria, and Gram negative bacteria. For instance, all LSM samples were found to be active towards Gram negative bacteria Escherichia coli, whereas some samples have presumed antimicrobial effect towards Gram negative bacteria Proteus vulgaris. Such results confirmed that LSM samples possessed cytotoxicity against CACO-2 and HepG-2 cells, and they could be considered to play a substantial role in pharmaceutical and therapeutic applications.
Collapse
|
30
|
A Review on the Advancements in the Field of Metal Complexes with Schiff Bases as Antiproliferative Agents. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metal complexes play an essential role in pharmaceutical sciences for their multiple and important activities. Schiff bases are versatile pharmacophores able to form chelating complexes with several metals in different oxidation states. Complexes with Schiff bases are widely described in the literature for their multiple actions and numerous advantages, such as low cost and easy synthesis. They show multiple biological activities, including antimicrobial, antioxidant, antimalarial, antinflammatory and antitumor. Schiff bases may also form complexes with lanthanides and actinides acting as catalysts (e.g., in various synthetic processes) and antitumor agents. This review intends to extend on our previous paper regarding Schiff bases as antitumorals, highlighting the importance, in the field of the anticancer agents, of these tools as ligands of metal complexes.
Collapse
|