1
|
Dou L, Tong L, Yan YB, Deng YH, Dong WK. EXPERIMENTAL AND THEORETICAL STUDY OF A SANDWICH-LIKE PHENOXO-BRIDGED HETEROBIMETALLIC ZINC(II)–MANGANESE(III) 3-MeOSALPHEN COMPLEX. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622080054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Pashameah RA, Alshareef M, Alharbi A, Alsoliemy A, Abumelha HM, Saad FA, El-Metwaly NM. Synthesis of (Tricyanofuran-3-ylmethylene)hydrazinyl thiazole-containing chromophore, study of its photophysical properties, solvatochromism and TD-DFT computations. LUMINESCENCE 2022; 37:1751-1759. [PMID: 35906732 DOI: 10.1002/bio.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
The chromophore 2-2-(3-cyano-5,5-dimethyl-4-((2-(thiazol-2-yl)hydrazono)methyl)-furan-2(5H)-ylidene)malononitrile (TzHTCF) was prepared by diazo-coupling of diazotized 2-aminothiazole with 3-cyano-2-(dicyanomethylene)-4,5,5-trimethylfuran (TCF). The TzHTCF absorption solvatochromism, in different polarity solvents, offered ΔEmax = +4.74 where the positive sign implied red shift occurrence and the TzHTCF lowest excited state was more polar than its ground one. While, the TzHTCF fluorescence spectrum afforded λem , in 416-670 nm range, and was more dependent on the solvent polarity than the absorption λmax , despite both exhibited red shift by 24 and 254 nm, respectively. To discover the Stokes' shift ( ∆ ν ¯ ) behaviour of TzHTCF derivative, Lippert-Mataga and linear solvation-energy relationship (LSER) formulations have been utilized where the LSER displayed better results than the Lippert-Mataga (R2 = 0. 9931). Furthermore, the LSER showed that the absorption and fluorescence solvatochromic behaviours were dependent on the solvent's hydrogen-bond donor (α) and acceptor (β), along with the solvent's polarizability (π*). Moreover, DFT calculations showed that TzHTCF has a planar configuration and its simulated absorption and emission spectra in DMSO revealed that λmax was primarily originated from HOMO→LUMO and HOMO-1→LUMO transitions, respectively.
Collapse
Affiliation(s)
- Rami A Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Arwa Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Amerah Alsoliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Hana M Abumelha
- Department of Chemistry ,College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
3
|
Sallam HH, Mohammed YHI, Al-Ostoot FH, Akhileshwari P, Sridhar M, Khanum SA. Experimental and computational studies on the synthesis and structural characterization of 2-(4-chlorophenoxy)-N-[4-(4-methylphenyl)-1,3-thiazol-2-yl]acetamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Bahadur A, Iqbal S, Muneer S, Alsaab HO, Awwad NS, Ibrahium HA. Synthesis, carbonic anhydrase enzyme inhibition evaluations, and anticancer studies of sulfonamide based thiadiazole derivatives. Bioorg Med Chem Lett 2021; 57:128520. [PMID: 34965467 DOI: 10.1016/j.bmcl.2021.128520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
The sulfonamide-based thiadiazole derivatives (STDs) with different hydrophobic/hydrophilic substitutions were synthesized to investigate their potentials in carbonic anhydrase inhibition (CAI). The CAI activity of the STDs (4a-4h) and the mechanism of the inhibition kinetics were determined. STD 4f contained both methoxy and Cl groups at benzene ring in STD 4f showed the lowest IC50 value. The molecular docking study confirmed that STDs bind strongly with the active sites of the target protein PDBID 1V9E. With the help of Lineweaver-Burk plots, inhibition kinetics of PDBIR 1V9E protein with STDs were determined. Cytotoxicity was checked against human keratinocyte cell lines and the anticancer properties were determined against MCF-7 cell lines. The electrochemical method was used to investigate the binding study with DNA and CA enzymes. Anticancer studies showed that STDs have weak bonding ability to DNA and strong binding ability with CA. It is concluded that anticancer activity is through CAI rather than by DNA binding.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, South Korea.
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Saiqa Muneer
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| |
Collapse
|
5
|
Designing novel anticancer sulfonamide based 2,5-disubstituted-1,3,4-thiadiazole derivatives as potential carbonic anhydrase inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Jenkins H, Radomski P, Miłoś A, Ślusarczyk L, Matwijczuk A. Novel Coumarin-Thiadiazole Hybrids and Their Cu(II) and Zn(II) Complexes as Potential Antimicrobial Agents and Acetylcholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22189709. [PMID: 34575894 PMCID: PMC8471537 DOI: 10.3390/ijms22189709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
A series of coumarin-thiadiazole hybrids and their corresponding Cu(II) and Zn(II) complexes were synthesized and characterized with the use of spectroscopic techniques. The results obtained indicate that all the coumarin-thiadiazole hybrids act as bidentate chelators of Cu(II) and Zn(II) ions. The complexes isolated differ in their ligand:metal ratio depending on the central metal. In most cases, the Zn(II) complexes are characteristic of a 1:1 ligand:metal ratio, while in the Cu(II) complexes the ligand:metal ratio is 2:1. All compounds were tested as potential antibacterial agents against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains demonstrating activities notably lower than commercially available antibiotics. The more promising results were obtained from the assessment of antineurodegenerative potency as all compounds showed moderate acetylcholinesterase (AChE) inhibition activity.
Collapse
Affiliation(s)
- Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
- Correspondence: ; Tel.: +48-(12)-628-2177
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Katarzyna Lecka-Szlachta
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Bernadette Creaven
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, D07 ADY7 Grangegorman, Ireland;
| | - Hollie Jenkins
- Department of Applied Science, Technological University Dublin, D24 FKT9 Tallaght, Ireland;
| | - Piotr Radomski
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Anna Miłoś
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| |
Collapse
|
7
|
Bahadur A, Iqbal S, Ujan R, Channar PA, Al-Anazy MM, Saeed A, Mahmood Q, Shoaib M, Shah M, Arshad I, Shabir G, Saifullah M, Liu G, Qayyum MA. Effect of organic solvents on solvatochromic, fluorescence, and electrochemical properties of synthesized thiazolylcoumarin derivatives. LUMINESCENCE 2021; 36:1189-1197. [PMID: 33759314 DOI: 10.1002/bio.4044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qaiser Mahmood
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mazloom Shah
- Department of chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Ifzan Arshad
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, China
| | - Muhammad Abdul Qayyum
- Department of Chemistry Division of Science and Technology University of Education Lahore, Pakistan
| |
Collapse
|