1
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
2
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
3
|
Xu Z, Liu H, Yu Y, Gao D, Leng C, Zhang S, Yan P. MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling. PLANT SIGNALING & BEHAVIOR 2023; 18:2283357. [PMID: 38053501 PMCID: PMC10761102 DOI: 10.1080/15592324.2023.2283357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Saline and alkali stress affects the growth and development, survival rate, and final yield of rice, while new nano materials can have a positive effect on rice growth. In order to investing the effects of carboxymethyl multi walled carbon nanotubes (MWCNTs) on the growth and development of rice seedlings under salt alkali stress, rice seedlings were cultured using rice variety "Songjing 3" using nutrient solution water culture method. The effects of MWCNTs on water absorption capacity, leaf photosynthesis, and sucrose metabolism of rice seedlings under 50 mmol/L saline-alkali stress (1NaCl: 9Na2SO4: 9NaHCO3: 1Na2CO3) conditions were investigated. The results showed that MWCNTs can improve the water use ability of roots and leaves, especially the water absorption ability of roots, which provides a guarantee for the improvement of rice biomass and the enhancement of leaf photosynthetic capacity under adverse conditions. After treatment with MWCNTs, the photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of leaves increased significantly, and the photochemical quenching value (qP), photochemical quantum efficiency value (Fv/Fm), and electron transfer rate value (ETR) of chlorophyll fluorescence parameters increased significantly, which is beneficial to the improvement of the PSII photosynthetic system. MWCNTs treatment promoted the increase of photosynthetic pigment content in leaves under salt and alkali stress, improved the ratio of Chla and Chlb parameters, increased the activities of key photosynthetic enzymes (RUBPCase and PEPCase) in leaves, increased the value of total lutein cycle pool (VAZ), and significantly enhanced the deepoxidation effect of lutein cycle (DEPS), which can effectively alleviate the stomatal and non stomatal constraints on leaf photosynthesis caused by salt and alkali stress. MWCNTs treatment significantly enhanced the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) under salt and alkali stress, and decreased the activities of soluble acid invertase (SAInv) and alkaline/neutral invertase (A/N-Inv), indicating that MWCNTs promoted sucrose synthesis while inhibiting sucrose decomposition, thereby promoting sucrose accumulation in rice leaves. This study can provide theoretical and experimental basis for the application of MWCNTs to the production of rice under salt and alkali stress, and can find a new way for rice production in saline and alkaline lands.
Collapse
Affiliation(s)
- Zhenhua Xu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Haiying Liu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yanmin Yu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Dawei Gao
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Chunxu Leng
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Shuli Zhang
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Ping Yan
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
4
|
Wu K, Xu C, Li T, Ma H, Gong J, Li X, Sun X, Hu X. Application of Nanotechnology in Plant Genetic Engineering. Int J Mol Sci 2023; 24:14836. [PMID: 37834283 PMCID: PMC10573821 DOI: 10.3390/ijms241914836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The ever-increasing food requirement with globally growing population demands advanced agricultural practices to improve grain yield, to gain crop resilience under unpredictable extreme weather, and to reduce production loss caused by insects and pathogens. To fulfill such requests, genome engineering technology has been applied to various plant species. To date, several generations of genome engineering methods have been developed. Among these methods, the new mainstream technology is clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases. One of the most important processes in genome engineering is to deliver gene cassettes into plant cells. Conventionally used systems have several shortcomings, such as being labor- and time-consuming procedures, potential tissue damage, and low transformation efficiency. Taking advantage of nanotechnology, the nanoparticle-mediated gene delivery method presents technical superiority over conventional approaches due to its high efficiency and adaptability in different plant species. In this review, we summarize the evolution of plant biomolecular delivery methods and discussed their characteristics as well as limitations. We focused on the cutting-edge nanotechnology-based delivery system, and reviewed different types of nanoparticles, preparation of nanomaterials, mechanism of nanoparticle transport, and advanced application in plant genome engineering. On the basis of established methods, we concluded that the combination of genome editing, nanoparticle-mediated gene transformation and de novo regeneration technologies can accelerate crop improvement efficiently in the future.
Collapse
Affiliation(s)
- Kexin Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Tong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
| |
Collapse
|
5
|
Kanakari E, Dendrinou-Samara C. Fighting Phytopathogens with Engineered Inorganic-Based Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2388. [PMID: 36984268 PMCID: PMC10052108 DOI: 10.3390/ma16062388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The development of effective and ecofriendly agrochemicals, including bactericides, fungicides, insecticides, and nematicides, to control pests and prevent plant diseases remains a key challenge. Nanotechnology has provided opportunities for the use of nanomaterials as components in the development of anti-phytopathogenic agents. Indeed, inorganic-based nanoparticles (INPs) are among the promising ones. They may play an effective role in targeting and killing microbes via diverse mechanisms, such as deposition on the microbe surface, destabilization of cell walls and membranes by released metal ions, and the induction of a toxic mechanism mediated by the production of reactive oxygen species. Considering the lack of new agrochemicals with novel mechanisms of action, it is of particular interest to determine and precisely depict which types of INPs are able to induce antimicrobial activity with no phytotoxicity effects, and which microbe species are affected. Therefore, this review aims to provide an update on the latest advances in research focusing on the study of several types of engineered INPs, that are well characterized (size, shape, composition, and surface features) and show promising reactivity against assorted species (bacteria, fungus, virus). Since effective strategies for plant protection and plant disease management are urgently needed, INPs can be an excellent alternative to chemical agrochemical agents as indicated by the present studies.
Collapse
|
6
|
Hachenberger YU, Rosenkranz D, Kromer C, Krause BC, Dreiack N, Kriegel FL, Koz’menko E, Jungnickel H, Tentschert J, Bierkandt FS, Laux P, Panne U, Luch A. Nanomaterial Characterization in Complex Media-Guidance and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:922. [PMID: 36903800 PMCID: PMC10005142 DOI: 10.3390/nano13050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity.
Collapse
Affiliation(s)
- Yves Uwe Hachenberger
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Daniel Rosenkranz
- Institute for Clinical Chemistry and Laboratory Medicin, Klinikum Oldenburg AöR, Rahel-Straus-Straße 10, 26133 Oldenburg, Germany
| | - Charlotte Kromer
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Benjamin Christoph Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Nadine Dreiack
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Fabian Lukas Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ekaterina Koz’menko
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Harald Jungnickel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Frank Stefan Bierkandt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ulrich Panne
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Construction and Characterization of Novel Hydrophilic Nanospheres Loaded with Lambda-Cyhalothrin via Ultrasonic Emulsification-Solvent Evaporation. Int J Mol Sci 2022; 23:ijms232214063. [PMID: 36430542 PMCID: PMC9699522 DOI: 10.3390/ijms232214063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Safe and efficient pesticide formulations have attracted great attention for the prevention and control of diseases and pests. In recent years, improving the effectiveness and duration of pesticides through nanotechnology has become a research hotspot in the field of pesticide formulations. Here, we develop a novel hydrophilic lambda-cyhalothrin nanospheres encapsulated with poly(styrene-co-maleic anhydride) (PSMA) via the ultrasonic emulsification-solvent evaporation method, which exhibited better particle size uniformity and dispersion in comparison with the traditional method. The effects of PSMA content, oil phase/water phase ratio and phacoemulsification time on the particle size and morphology of nanoparticles were investigated to optimize preparation process parameters. Meanwhile, the wettability and adhesion behavior on the leaf surface, the release properties, and the storage stability of nanoparticles were characterized to evaluate the performance of the novel nano-formulation. This work not only establishes a facile and promising method for the applicable of insoluble pesticides, but also develops an innovative nano-formulation with hydrophilicity and high leaf adhesion, which opens a new direction in plant protection and residue reduction.
Collapse
|
8
|
Xiao W, Cao X, Yao P, Garamus VM, Chen Q, Cheng J, Zou A. Enhanced Insecticidal Effect and Interface Behavior of Nicotine Hydrochloride Solution by a Vesicle Surfactant. Molecules 2022; 27:6916. [PMID: 36296512 PMCID: PMC9608593 DOI: 10.3390/molecules27206916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nicotine hydrochloride (NCT) has a good control effect on hemiptera pests, but its poor interfacial behavior on the hydrophobic leaf leads to few practical applications. In this study, a vesicle solution by the eco-friendly surfactant, sodium diisooctyl succinate sulfonate (AOT), was prepared as the pesticide carrier for NCT. The physical chemical properties of NCT-loaded AOT vesicles (NCT/AOT) were investigated by techniques such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The results showed that the pesticide loading and encapsulation efficiency of NCT/AOT were 10.6% and 94.8%, respectively. The size of NCT/AOT vesicle was about 177 nm. SAXS and surface tension results indicated that the structure of the NCT/AOT vesicle still existed with low surface tension even after being diluted 200 times. The contact angle of NCT/AOT was always below 30°, which means it could wet the surface of the cabbage leaf well. Consequently, NCT/AOT vesicles could effectively reduce the bounce of pesticide droplets. In vitro release experiments showed that NCT/AOT vesicles had sustained release properties; 60% of NCT in NCT/AOT released after 24 h, and 80% after 48 h. Insecticidal activity assays against aphids revealed that AOT vesicles exhibited insecticidal activity and could have a synergistic insecticidal effect with NCT after the loading of NCT. Thus, the NCT/AOT vesicles significantly improved the insecticidal efficiency of NCT, which has potential application in agricultural production activities.
Collapse
Affiliation(s)
- Wenjun Xiao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiufang Cao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengji Yao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Vasil M. Garamus
- Department of Power-Based Materials Development, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Qibin Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Aihua Zou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
9
|
Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, Baek KH, Chakrabartty I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192587. [PMID: 36235454 PMCID: PMC9573764 DOI: 10.3390/plants11192587] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
The widespread use of fertilizers is a result of the increased global demand for food. The commonly used chemical fertilizers may increase plant growth and output, but they have deleterious effects on the soil, the environment, and even human health. Therefore, nanofertilizers are one of the most promising solutions or substitutes for conventional fertilizers. These engineered materials are composed of nanoparticles containing macro- and micronutrients that are delivered to the plant rhizosphere in a regulated manner. In nanofertilizers, the essential minerals and nutrients (such as N, P, K, Fe, and Mn) are bonded alone or in combination with nano-dimensional adsorbents. This review discusses the development of nanotechnology-based smart and efficient agriculture using nanofertilizers that have higher nutritional management, owing to their ability to increase the nutrient uptake efficiency. Additionally, the synthesis and mechanism of action of the nanofertilizers are discussed, along with the different types of fertilizers that are currently available. Furthermore, sustainable agriculture can be realised by the targeted delivery and controlled release of nutrients through the application of nanoscale active substances. This paper emphasises the successful development and safe application of nanotechnology in agriculture; however, certain basic concerns and existing gaps in research need to be addressed and resolved.
Collapse
Affiliation(s)
- Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati 781008, Assam, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| | - Maryam Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), 9th Mile, Techno City, Baridua, Ri-Bhoi 793101, Meghalaya, India
| |
Collapse
|
10
|
Takeshita V, Carvalho LB, Galhardi JA, Munhoz-Garcia GV, Pimpinato RF, Oliveira HC, Tornisielo VL, Fraceto LF. Development of a Preemergent Nanoherbicide: From Efficiency Evaluation to the Assessment of Environmental Fate and Risks to Soil Microorganisms. ACS NANOSCIENCE AU 2022; 2:307-323. [PMID: 37102067 PMCID: PMC10125138 DOI: 10.1021/acsnanoscienceau.1c00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nanoparticles based on biodegradable polymers have been shown to be excellent herbicide carriers, improving weed control and protecting the active ingredient in the crop fields. Metribuzin is often found in natural waters, which raises environmental concerns. Nanoencapsulation of this herbicide could be an alternative to reduce its losses to the environment and improve gains in its efficiency. However, there is a paucity of information about the behavior of nanoformulations of herbicides in environmental matrices. In this study, the stability of nanoencapsulated metribuzin in polymeric nanoparticles (nanoMTZ) was verified over time, as well as its dissipation in different soils, followed by the effects on soil enzymatic activity. The physiological parameters and control effects of nanoMTZ on Ipomoea grandifolia plants were investigated. No differences were verified in the half-life of nanoencapsulated metribuzin compared to a commercial formulation of the herbicide. Moreover, no suppressive effects on soil enzymatic activities were observed. The retention of nanoMTZ in the tested soils was lower compared to its commercial analogue. However, the mobility of nanoencapsulated metribuzin was not greatly increased, reflecting a low risk of groundwater contamination. Weed control was effective even at the lowest dose of nanoMTZ (48 g a.i. ha-1), which was consistent with the higher efficiency of nanoMTZ compared to the conventional herbicide in inhibiting PSII activity and decreasing pigment levels. Overall, we verified that nanoMTZ presented a low environmental risk, with increased weed control.
Collapse
Affiliation(s)
- Vanessa Takeshita
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Lucas Bragança Carvalho
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | - Juliana Aparecida Galhardi
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | | | - Rodrigo Floriano Pimpinato
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Halley Caixeta Oliveira
- Department
of Animal and Plant Biology, State University
of Londrina, PR 445,
km 380, 86057-970 Londrina, PR, Brazil
| | - Valdemar Luiz Tornisielo
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
11
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
12
|
Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5766199. [PMID: 35509832 PMCID: PMC9060970 DOI: 10.1155/2022/5766199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop “nanopesticides” that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals’ sustainability due to polymers’ intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.
Collapse
|
13
|
Al Jabri H, Saleem MH, Rizwan M, Hussain I, Usman K, Alsafran M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel) 2022; 12:life12040594. [PMID: 35455085 PMCID: PMC9026433 DOI: 10.3390/life12040594] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
Zinc (Zn) is plant micronutrient, which is involved in many physiological functions, and an inadequate supply will reduce crop yields. Its deficiency is the widest spread micronutrient deficiency problem; almost all crops and calcareous, sandy soils, as well as peat soils and soils with high phosphorus and silicon content are expected to be deficient. In addition, Zn is essential for growth in animals, human beings, and plants; it is vital to crop nutrition as it is required in various enzymatic reactions, metabolic processes, and oxidation reduction reactions. Finally, there is a lot of attention on the Zn nanoparticles (NPs) due to our understanding of different forms of Zn, as well as its uptake and integration in the plants, which could be the primary step toward the larger use of NPs of Zn in agriculture. Nanotechnology application in agriculture has been increasing over recent years and constitutes a valuable tool in reaching the goal of sustainable food production worldwide. A wide array of nanomaterials has been used to develop strategies of delivery of bioactive compounds aimed at boosting the production and protection of crops. ZnO-NPs, a multifunctional material with distinct properties and their doped counterparts, were widely being studied in different fields of science. However, its application in environmental waste treatment and many other managements, such as remediation, is starting to gain attention due to its low cost and high productivity. Nano-agrochemicals are a combination of nanotechnology with agrochemicals that have resulted in nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides being developed. They have anti-bacterial, anti-fungal, anti-inflammatory, antioxidant, and optical capabilities. Green approaches using plants, fungi, bacteria, and algae have been implemented due to the high rate of harmful chemicals and severe situations used in the manufacturing of the NPs. This review summarizes the data on Zn interaction with plants and contributes towards the knowledge of Zn NPs and its impact on plants.
Collapse
Affiliation(s)
- Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar; (M.H.S.); (M.R.)
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (K.U.); (M.A.)
| |
Collapse
|
14
|
Zobir SAM, Ali A, Adzmi F, Sulaiman MR, Ahmad K. A Review on Nanopesticides for Plant Protection Synthesized Using the Supramolecular Chemistry of Layered Hydroxide Hosts. BIOLOGY 2021; 10:1077. [PMID: 34827070 PMCID: PMC8614857 DOI: 10.3390/biology10111077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
The rapid growth in the human population has triggered increased demand for food supply, and in turn has prompted a higher amount of agrochemical usage to meet the gaps between food production and consumption. The problem with conventional agro-nanochemicals is the reduced effectiveness of the active ingredient in reaching the target, along with leaching, evaporation, etc., which ultimately affect the environment and life, including humans. Fortunately, nanotechnology platforms offer a new life for conventional pesticides, which improves bioavailability through different kinetics, mechanisms and pathways on their target organisms, thus enabling them to suitably bypass biological and other unwanted resistances and therefore increase their efficacy. This review is intended to serve the scientific community for research, development and innovation (RDI) purposes, by providing an overview on the current status of the host-guest supramolecular chemistry of nanopesticides, focusing on only the two-dimensional (2D), brucite-like inorganic layered hydroxides, layered hydroxide salts and layered double hydroxides as the functional nanocarriers or as the hosts in smart nanodelivery systems of pesticides for plant protection. Zinc layered hydroxides and zinc/aluminum-layered double hydroxides were found to be the most popular choices of hosts, presumably due to their relative ease to prepare and cheap cost. Other hosts including Mg/Al-, Co/Cr-, Mg/Fe-, Mg/Al/Fe-, Zn/Cr- and Zn/Cu-LDHs were also used. This review also covers various pesticides which were used as the guest active agents using supramolecular host-guest chemistry to combat various pests for plant protection. This looks towards a new generation of agrochemicals, "agro-nanochemicals", which are more effective, and friendly to life, humans and the environment.
Collapse
Affiliation(s)
- Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia;
| | - Fariz Adzmi
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Mohd Roslan Sulaiman
- Department of Science and Biomedicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
15
|
Wang C, Cui B, Wang Y, Wang M, Zeng Z, Gao F, Sun C, Guo L, Zhao X, Cui H. Preparation and Size Control of Efficient and Safe Nanopesticides by Anodic Aluminum Oxide Templates-Assisted Method. Int J Mol Sci 2021; 22:8348. [PMID: 34361113 PMCID: PMC8347391 DOI: 10.3390/ijms22158348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022] Open
Abstract
Efficient and safe nanopesticides play an important role in pest control due to enhancing target efficiency and reducing undesirable side effects, which has become a hot spot in pesticide formulation research. However, the preparation methods of nanopesticides are facing critical challenges including low productivity, uneven particle size and batch differences. Here, we successfully developed a novel, versatile and tunable strategy for preparing buprofezin nanoparticles with tunable size via anodic aluminum oxide (AAO) template-assisted method, which exhibited better reproducibility and homogeneity comparing with the traditional method. The storage stability of nanoparticles at different temperatures was evaluated, and the release properties were also determined to evaluate the performance of nanoparticles. Moreover, the present method is further demonstrated to be easily applicable for insoluble drugs and be extended for the study of the physicochemical properties of drug particles with different sizes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.W.); (B.C.); (Y.W.); (M.W.); (Z.Z.); (F.G.); (C.S.); (L.G.)
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.W.); (B.C.); (Y.W.); (M.W.); (Z.Z.); (F.G.); (C.S.); (L.G.)
| |
Collapse
|