1
|
Singh A, Singh K, Kaur K, Singh A, Sharma A, Kaur K, Kaur J, Kaur G, Kaur U, Kaur H, Singh P, Bedi PMS. Coumarin as an Elite Scaffold in Anti-Breast Cancer Drug Development: Design Strategies, Mechanistic Insights, and Structure-Activity Relationships. Biomedicines 2024; 12:1192. [PMID: 38927399 PMCID: PMC11200728 DOI: 10.3390/biomedicines12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | | | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA;
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Jaskirat Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Gurleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan 140413, Mohali, India;
| | - Harsimran Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Prabhsimran Singh
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
2
|
Mushtaq A, Asif R, Humayun WA, Naseer MM. Novel isatin-triazole based thiosemicarbazones as potential anticancer agents: synthesis, DFT and molecular docking studies. RSC Adv 2024; 14:14051-14067. [PMID: 38686286 PMCID: PMC11057040 DOI: 10.1039/d4ra01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Thiosemicarbazones of isatin have been found to exhibit versatile bioactivities. In this study, two distinct types of isatin-triazole hybrids 3a and 3b were accessed via copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), together with their mono and bis-thiosemicarbazone derivatives 4a-h and 5a-h. In addition to the characterization by physical, spectral and analytical data, a DFT study was carried out to obtain the optimized geometries of all thiosemicarbazones. The global reactivity values showed that among the synthesized derivatives, 4c, 4g and 5c having nitro substituents are the most soft compounds, with compound 5c having the highest electronegativity and electrophilicity index values among the synthesized series, thus possessing strong binding ability with biomolecules. Molecular docking studies were performed to explore the inhibitory ability of the selected compounds against the active sites of the anticancer protein of phosphoinositide 3-kinase (PI3K). Among the synthesized derivatives, 4-nitro substituted bisthiosemicarbazone 5c showed the highest binding energy of -10.3 kcal mol-1. These findings demonstrated that compound 5c could be used as a favored anticancer scaffold via the mechanism of inhibition against the PI3K signaling pathways.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Rabbia Asif
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waqar Ahmed Humayun
- Department of Medical Oncology & Radiotherapy, King Edward Medical University Lahore 54000 Pakistan
| | | |
Collapse
|
3
|
Rohila Y, Sebastian S, Ansari A, Kumar D, Mishra DK, Gupta MK. A Comprehensive Review of the Diverse Spectrum Activity of 1,2,3-Triazole-linked Isatin Hybrids. Chem Biodivers 2024; 21:e202301612. [PMID: 38332679 DOI: 10.1002/cbdv.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Heterocyclic compounds containing 1,2,3-triazole and isatin as core structures have emerged as promising drug candidates due to their diverse biological activities such as anti-cancer, antifungal, antimicrobial, antitumor, anti-epileptic, antiviral, and more. The presence of 1,2,3-triazoles and isatin heterocycles in these hybrids, both individually known for their medicinal significance, has increasingly piqued the interest of drug discovery researchers, as they seek to delve deeper into their extensive pharmacological potential for enhancing therapeutic efficacy. Moreover, these hybrid compounds are synthetically accessible using readily available materials. Therefore, there is a pressing need to provide a comprehensive overview of the existing knowledge in this field, offering valuable insights to readers and paving the way for the discovery of novel 1,2,3-triazole-linked isatin hybrids with therapeutic potential.
Collapse
Affiliation(s)
- Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - D K Mishra
- Department of Chemistry, Shri Ramswaroop Memorial College of Engineering & Management, Lucknow, 226028, Uttar Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Department of Chemistry, Central University of Haryana. Mahendergarh-123031, Haryana, India
| |
Collapse
|
4
|
Maiuolo L, Tallarida MA, Meduri A, Fiorani G, Jiritano A, De Nino A, Algieri V, Costanzo P. 1,2,3-Triazole Hybrids Containing Isatins and Phenolic Moieties: Regioselective Synthesis and Molecular Docking Studies. Molecules 2024; 29:1556. [PMID: 38611835 PMCID: PMC11013233 DOI: 10.3390/molecules29071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The synthesis of hybrid molecules is one of the current strategies of drug discovery for the development of new lead compounds. The 1,2,3-triazole moiety represents an important building block in Medicinal Chemistry, extensively present in recent years. In this paper, we presented the design and the synthesis of new 1,2,3-triazole hybrids, containing both an isatine and a phenolic core. Firstly, the non-commercial azide and the alkyne synthons were prepared by different isatines and phenolic acids, respectively. Then, the highly regioselective synthesis of 1,4-disubstituted triazoles was obtained in excellent yields by a click chemistry approach, catalyzed by Cu(I). Finally, a molecular docking study was performed on the hybrid library, finding four different therapeutic targets. Among them, the most promising results were obtained on 5-lipoxygenase, an enzyme involved in the inflammatory processes.
Collapse
Affiliation(s)
- Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | | | - Angelo Meduri
- RINA Consulting—Centro Sviluppo Materiali SpA, Zona Industriale San Pietro Lametino, Comparto 1, 88046 Lamezia Terme, CZ, Italy;
| | - Giulia Fiorani
- Department Molecular Sciences and Nanosystems, University Ca’ Foscari Venezia, 30172 Mestre, VE, Italy;
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| | - Vincenzo Algieri
- IRCCS NEUROMED—Istituto Neurologico Mediterraneo, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (L.M.); (A.J.); (A.D.N.)
| |
Collapse
|
5
|
Xiao PL, Song XY, Xiong XT, Peng DY, Nie XL. Synthesis, Crystal Structure, Spectral Characterization and Antifungal Activity of Novel Phenolic Acid Triazole Derivatives. Molecules 2023; 28:6970. [PMID: 37836812 PMCID: PMC10574244 DOI: 10.3390/molecules28196970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
At present, phenolic acid derivatives and triazole derivatives have a good antifungal effect, which has attracted widespread attention. A series of novel phenolic acid triazole derivatives were synthesized, and their structures were characterized by IR, MS, NMR, and X-ray crystal diffraction. Compound methyl 4-(2-bromoethoxy)benzoate, methyl 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)benzoate, 4-(2-(1H-1,2,4-triazol-1-yl)ethoxy)benzoic acid and 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)-3-methoxybenzoic acid crystallize in the monoclinic system with space group P21/n, the monoclinic system with space group P21, the monoclinic system with space group P21 and the orthorhombic system with space group Pca21, respectively. At a concentration of 100 μg/mL and 200 μg/mL, the antifungal activity against seven plant pathogen fungi was determined. Compound methyl 4-(2-bromoethoxy)benzoate has the best inhibitory effect on Rhizoctonia solani AG1, and the inhibitory rate reached 88.6% at 200 μg/mL. The inhibitory rates of compound methyl 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)benzoate against Fusarium moniliforme and Sphaeropsis sapinea at a concentration of 200 μg/mL were 76.1% and 75.4%, respectively, which were better than that of carbendazim.
Collapse
Affiliation(s)
- Pan-Lei Xiao
- College of Chemistry & Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiu-Ying Song
- School of Information and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin-Ting Xiong
- College of Chemistry & Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Da-Yong Peng
- College of Chemistry & Materials, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Nanchang 330045, China
| | - Xu-Liang Nie
- College of Chemistry & Materials, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Nanchang 330045, China
| |
Collapse
|
6
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
7
|
Elgazar AA, El-Domany RA, Eldehna WM, Badria FA. Theophylline-based hybrids as acetylcholinesterase inhibitors endowed with anti-inflammatory activity: synthesis, bioevaluation, in silico and preliminary kinetic studies. RSC Adv 2023; 13:25616-25634. [PMID: 37649576 PMCID: PMC10463010 DOI: 10.1039/d3ra04867e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
In this study, we investigated the conjugation of theophylline with different compounds of natural origin hoping to construct new hybrids with dual activity against cholinergic and inflammatory pathways as potential agents for the treatment of Alzheimer's disease (AD). Out of 28 tested hybrids, two hybrids, acefylline-eugenol 6d and acefylline-isatin 19, were able to inhibit acetylcholinesterase (AChE) at low micromolar concentration displaying IC50 values of 1.8 and 3.3 μM, respectively, when compared to the galantamine standard AChE inhibitor. Moreover, the prepared hybrids exhibited a significant anti-inflammatory effect against lipopolysaccharide induced inflammation in RAW 264.7 and reduced nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in a dose dependent manner. These hybrids demonstrated significant reductions in nitric oxide (NO), tumor necrosis alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels in RAW 264.7 cells induced by lipopolysaccharide (LPS). The findings of this study were further explained in light of network pharmacology analysis which suggested that AChE and nitric oxide synthase were the main targets of the most active compounds. Molecular docking studies revealed their ability to bind to the heme binding site of nitric oxide synthase 3 (NOS-3) and effectively occupy the active site of AChE, interacting with both the peripheral aromatic subsite and catalytic triad. Finally, the compounds demonstrated stability in simulated gastric and intestinal environments, suggesting potential absorption into the bloodstream without significant hydrolysis. These findings highlight the possible therapeutic potential of acefylline-eugenol 6d and acefylline-isatin 19 hybrids in targeting multiple pathological mechanisms involved in AD, offering promising avenues for further development as potential treatments for this devastating disease.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33516 Kafrelsheikh Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura Egypt +20-1001762927
| |
Collapse
|
8
|
Khan SA, Akhtar MJ, Gogoi U, Meenakshi DU, Das A. An Overview of 1,2,3-triazole-Containing Hybrids and Their Potential Anticholinesterase Activities. Pharmaceuticals (Basel) 2023; 16:179. [PMID: 37259329 PMCID: PMC9961747 DOI: 10.3390/ph16020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.
Collapse
Affiliation(s)
- Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | | | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | | | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| |
Collapse
|
9
|
Dimkovski A, Mihajloska E, Gigopulu O, Naumovska Z, Suturkova L, Poceva Panovska A. Design and synthetic approach of novel hybrid molecules for treatment of Alzheimer’s disease. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Aleksandar Dimkovski
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| | - Evgenija Mihajloska
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| | - Olga Gigopulu
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| | - Zorica Naumovska
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| | - Ljubica Suturkova
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| | - Ana Poceva Panovska
- Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, str. Mother Tereza 47, 1000 Skopje, R.N. Macedonia
| |
Collapse
|
10
|
A series of 1,2,3-triazole compounds: Synthesis, characterization, and investigation of the cholinesterase inhibitory properties via in vitro and in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Obaid RJ, Mughal EU, Naeem N, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Singh H, Agrawal DK. Recent advances in the development of active hybrid molecules in the treatment of cardiovascular diseases. Bioorg Med Chem 2022; 62:116706. [PMID: 35364524 PMCID: PMC9018605 DOI: 10.1016/j.bmc.2022.116706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
Multifactorial nature of the underlying pathophysiology of chronic disorders hinders in the effective treatment and management of many complex diseases. The conventional targeted therapies have limited applications due to highly complicated disease etiology. Cardiovascular diseases (CVDs) are the group of disorders of the heart and blood vessels. Currently, there is limited knowledge on the underlying cellular and molecular mechanisms of many of the CVDs due to their complex pathophysiology and co-morbidities. Their management with conventional medications results in failure due to adverse drug reactions and clinical specificity of solo-targeting drug therapy. Therefore, it is critical to introduce an alternative strategy to treat multi-factorial diseases. In the past few years, discovery and use of multi-targeted drug therapy with hybrid molecules have shown promising results with minimal side effects, and thus considered a most effective approach. In this review article, prominent hybrid molecules combining with different active moieties are reported to synergistically and simultaneously block different pathways involved in CVDs. Here, we provide a critical evaluation and discussion on their pharmacology with mechanistic insights and the structure activity relationship. The timely information provided in this article reveals the recent trends of molecular hybridization to the scientific community interested in CVDs and help them in designing the next generation of multi-targeting drug therapeutics.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
13
|
Synthesis, in-vitro biological evaluation, and molecular docking study of novel spiro-β-lactam-isatin hybrids. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02898-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Singh JV, Thakur S, Kumar N, Singh H, Mithu VS, Singh H, Bhagat K, Gulati HK, Sharma A, Singh H, Sharma S, Bedi PMS. Donepezil-Inspired Multitargeting Indanone Derivatives as Effective Anti-Alzheimer's Agents. ACS Chem Neurosci 2022; 13:733-750. [PMID: 35195392 DOI: 10.1021/acschemneuro.1c00535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In continuous efforts to develop anti-Alzheimer's agents, we rationally designed and synthesized a series of multitargeting molecules by incorporating the essential molecular features of the standard drug donepezil. Among the series, compound 4b showed multitargeting properties to act as an anti-Alzheimer's agent, which is better tolerable in vivo than donepezil. Acetylcholinesterase (AChE) inhibition data showed that compound 4b inhibits the enzyme with a half-maximal inhibitory concentration (IC50) value of 0.78 μM and also showed DNA protection, which was confirmed through the DNA nicking assay, suggesting the protective effect of 4b against oxidative DNA damage. Compound 4b also showed 53.04% inhibition against Aβ1-42 aggregations, which was found comparable to that of the standard compound curcumin. Molecular dynamics simulations were performed to check the stability of compound 4b with the enzyme AChE, which showed that the enzyme-ligand complex is stable enough to block the hydrolysis of acetylcholine in the brain. Its higher LD50 cutoff value (50 mg/kg) in comparison to donepezil (LD50: 25 mg/kg) made it safer, suggesting that it can be used in further clinical experiments. To evaluate its anti-Alzheimer property, a mice model with melamine-induced cognitive dysfunction was used, and Morris water maze and Rotarod tests were performed. A significant improvement in memory was observed after the treatment with compound 4b and donepezil. The study postulated that the introduction of important structural features of donepezil (dimethoxyindanone moiety as ring-A) embarked with terminal aromatic ether (ring-B and ring-C) made 4b a multitargeting molecule that offers a way for developing alternative therapeutics in the future against Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
15
|
Desai NC, Rupala YM, Khasiya AG, Shah KN, Pandit UP, Khedkar VM. Synthesis, biological evaluation, and molecular docking study of thiophene‐, piperazine‐, and thiazolidinone‐based hybrids as potential antimicrobial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Yogesh M. Rupala
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Ashvinkumar G. Khasiya
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Keyur N. Shah
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar India
| | - Unnat P. Pandit
- Special Centre for Systems Medicine Jawaharlal Nehru University New Delhi India
| | | |
Collapse
|