1
|
Guezane-Lakoud S, Ferrah M, Merabet-Khelassi M, Touil N, Toffano M, Aribi-Zouioueche L. 2-Hydroxymethyl-18-crown-6 as an efficient organocatalyst for α -aminophosphonates synthesized under eco-friendly conditions, DFT, molecular docking and ADME/T studies. J Biomol Struct Dyn 2024; 42:3332-3348. [PMID: 37184142 DOI: 10.1080/07391102.2023.2213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
Eco-friendly and simple procedure has been developed for the synthesis of α-aminophosphonates that act as topoisomerase II α-inhibiting anticancer agent, using 2-hydroxymethyl-18-crown-6 as an unexpected homogeneous organocatalyst in multicomponents reaction of aromatic aldehyde, aniline and diethylphosphite in one pot via Kabachnik-Fields reaction. This efficient method proceeds with catalytic amount, transition metal-free, at room temperature within short reaction time, giving the α-aminophosphonates derivatives (4a-r) in high chemical yields (up to 80%). Theoretical DFT calculations of three compounds (4p, 4q and 4r) were carried out in a gas phase at CAM-B3LYP 6-31G (d,p) basis set to predict the molecular geometries and chemical reactivity descriptors. The frontier orbital energies (HOMO/LUMO) were described the charge transfer and used to predict structure-activity relationship study. Molecular electrostatic potential (MEP) has also been analyzed. Molecular docking studies are implemented to analyze the binding energy and compared with Adriamycin against 1ZXM receptor which to be considered as antitumor candidates. In silico pharmacological ADMET properties as Drug likeness and oral activity have been carried out based on Lipinski's rule of five.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samia Guezane-Lakoud
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Meriem Ferrah
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Mounia Merabet-Khelassi
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Nourhane Touil
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Martial Toffano
- Equipe de Catalyse Moléculaire-ICMMO Bât 420. Université Paris-Saclay, Paris, France
| | - Louisa Aribi-Zouioueche
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE) Badji Mokhtar Annaba-University, Annaba, Algeria
| |
Collapse
|
2
|
Tsacheva I, Todorova Z, Momekova D, Momekov G, Koseva N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals (Basel) 2023; 16:938. [PMID: 37513849 PMCID: PMC10386503 DOI: 10.3390/ph16070938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates.
Collapse
Affiliation(s)
- Ivelina Tsacheva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Zornica Todorova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, 1 "15 Noemvri" Str., 1040 Sofia, Bulgaria
| |
Collapse
|
3
|
Elsherbiny DA, Abdelgawad AM, Shaheen TI, Abdelwahed NAM, Jockenhoevel S, Ghazanfari S. Thermoresponsive nanofibers loaded with antimicrobial α-aminophosphonate-o/w emulsion supported by cellulose nanocrystals for smart wound care patches. Int J Biol Macromol 2023; 233:123655. [PMID: 36780965 DOI: 10.1016/j.ijbiomac.2023.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Long-term topical application of antibiotics on wounds has led to the emergence of drug-resistant bacterial infections. Antibiotic incorporation into the wound dressing requires enormous advancement of the field to ensure that the needed dose is released when the infection arises. This study synthesized a series of antimicrobial α-aminophosphonate derivatives, and the most effective compound was incorporated into thermoresponsive wound dressing patches. Wound dressing mats were fabricated by needleless electrospinning, and the resultant nanofiber mats were coated with a thermoresponsive eicosane/cellulose nanocrystals o/w system loaded with active α-aminophosphonate derivatives. Chemical, physical, thermal, and antimicrobial properties of the wound dressings were characterized wound dressings. Using SEM analysis, Nanofibers spun with 20 % w/v solutions were selected for drug-emulsion loading since they showed lower diameters with higher surface area. Furthermore, the drug-emulsion coating on the electrospun dressings improved the hydrophilicity of the wound dressings, and the thermoresponsive behavior of the mats was proved using differential scanning calorimetry data. Finally, the drug-loaded electrospun meshes were found active against tested microorganisms, and clear inhibition zones were observed. In conclusion, this novel approach of synthesizing a new family of antimicrobial molecules and their incorporation into nanofibers from renewable sources exhibits great potential for smart and innovative dressings.
Collapse
Affiliation(s)
- Dalia A Elsherbiny
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, Menoufia, Egypt; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Center (Affiliation ID: 60014618), 12622, Dokki, Giza, Egypt; Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt.
| | - Tharwat I Shaheen
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City 35511, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
4
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Trocha A, Piotrowska DG, Głowacka IE. Synthesis of Enantiomerically Enriched Protected 2-Amino-, 2,3-Diamino- and 2-Amino-3-Hydroxypropylphosphonates. Molecules 2023; 28:1466. [PMID: 36771131 PMCID: PMC9921368 DOI: 10.3390/molecules28031466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Simple and efficient strategies for the syntheses of enantiomerically enriched functionalized diethyl 2-amino-, 2,3-diamino- and 2-amino-3-hydroxypropylphosphonates have been developed starting from, respectively, N-protected (aziridin-2-yl)methylphosphonates, employing a regioselective aziridine ring-opening reaction with corresponding nucleophiles. Diethyl (R)- and (S)-2-(N-Boc-amino)propylphosphonates were obtained via direct regiospecific hydrogenolysis of the respective enantiomer of (R)- and (S)-N-Boc-(aziridin-2-yl)methylphosphonates. N-Boc-protected (R)- and (S)-2,3-diaminopropylphosphonates were synthesized from (R)- and (S)-N-Bn-(aziridin-2-yl)methylphosphonates via a regiospecific ring-opening reaction with neat trimethylsilyl azide and subsequent reduction of (R)- and (S)-2-(N-Boc-amino)-3-azidopropylphosphonates using triphenylphosphine. On the other hand, treatment of the corresponding (R)- and (S)-N-Bn-(aziridin-2-yl)methylphosphonates with glacial acetic acid led regiospecifically to the formation of (R)- and (S)-2-(N-Bn-amino)-3-acetoxypropylphosphonates.
Collapse
Affiliation(s)
| | | | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
6
|
Antioxidant activity of new synthesized imine and its corresponding α-aminophosphonic acid: Experimental and theoretical evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Full factorial optimization of α-aminophosphonates synthesis using diphenylphosphinic acid as efficient organocatalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Yang P, Hong G, Tang Z, Wang Q, Zhong Y, Zhou C, Gong Y, Wang L. Convenient Hydrophosphorylation of Dibenzo[
b,f
][1,4]oxa‐/thiazepines by Acid Catalysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Gang Hong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhicong Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi Zhong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Chen Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yu Gong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
9
|
Synthesis, bioinformatics and biological evaluation of novel α-aminophosphonates as antibacterial agents: DFT, molecular docking and ADME/T studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|