1
|
Binjawhar DN, Al-Salmi FA, Alghamdi MA, Abu Ali OA, Fayad E, Rizzk YW, Ali NM, El-Deen IM, Eltamany EH. In vitro anti-breast cancer study of hybrid cinnamic acid derivatives bearing 2-thiohydantoin moiety. Future Med Chem 2024; 16:1665-1684. [PMID: 38949859 PMCID: PMC11370905 DOI: 10.1080/17568919.2024.2366694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: To synthesize new hybrid cinnamic acids (10a, 10b and 11) and ester derivatives (7, 8 and 9) and investigate their anti-breast cancer activities.Materials & methods: Compounds 7-11 were evaluated (in vitro) for their cytotoxic activities against the MCF-7 cell line. A flow cytometry examination was performed. Protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), topoisomerase II and caspase-9 were measured by qRT-PCR. Molecular docking studies were conducted.Results: Several components were discovered to be active, mainly component 11, which induced arrest in the cell cycle at phase S, greatly decreased the expression of Nrf2 and topoisomerase II; and upregulated the expression of caspase-9.Conclusion: The newly thiohydantoin-cinnamic acid hybrids can contribute to creating promising candidates for cancer drugs.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Fawziah A Al-Salmi
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Youstina William Rizzk
- Department of Chemistry (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Nourhan M Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Mohey El-Deen
- Department of Chemistry (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Elsayed H Eltamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Sheta YS, Sarg MT, Abdulrahman FG, Nossier ES, Husseiny EM. Novel imidazolone derivatives as potential dual inhibitors of checkpoint kinases 1 and 2: Design, synthesis, cytotoxicity evaluation, and mechanistic insights. Bioorg Chem 2024; 149:107471. [PMID: 38823311 DOI: 10.1016/j.bioorg.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 μM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Collapse
Affiliation(s)
- Yasmin S Sheta
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Marwa T Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
3
|
Abdulrahman FG, Abulkhair HS, Saeed HSE, El-Dydamony NM, Husseiny EM. Design, synthesis, and mechanistic insight of novel imidazolones as potential EGFR inhibitors and apoptosis inducers. Bioorg Chem 2024; 144:107105. [PMID: 38219482 DOI: 10.1016/j.bioorg.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
As regards to the structural analysis and optimization of diverse potential EGFR inhibitors, two series of imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates were designed and constructed as potential EGFR suppressors. The cytotoxic effect of the prepared derivatives was assessed toward hepatic, breast, and prostate cancerous cells (Hep-G2, MCF-7, and PC-3). Three derivatives 3d, 3e, and 3f presented potent antiproliferative activity and selectivity against the examined tumor cells showing IC50 values at low micromolar levels. Hence, successive biological assays were applied to determine the probable mechanism of action of the new compounds. They exhibited significant EGFR suppression with an IC50 range of 0.137-0.507 µM. The most effective EGFR inhibitor 3f arrested the MCF-7 cell cycle at the S phase by inducing the apoptotic pathway that was confirmed via increasing the expression of Caspases 8, 9, and Bax, which are associated with Bcl-2 decline. Additionally, molecular docking displayed a distinctive interaction between 3f and EGFR binding pocket. Overall, this work introduces some novel imidazolyl-2-cyanoprop-2-enimidothioates and ethyl imidazolylthiomethylacrylates as potential cytotoxic and EGFR inhibitors that deserve further research in tumor therapy.
Collapse
Affiliation(s)
- Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Hoda S El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
4
|
Khodair AI, El-Hallouty SM, Cagle-White B, Abdel Aziz MH, Hanafy MK, Mowafy S, Hamdy NM, Kassab SE. Camptothecin structure simplification elaborated new imidazo[2,1-b]quinazoline derivative as a human topoisomerase I inhibitor with efficacy against bone cancer cells and colon adenocarcinoma. Eur J Med Chem 2024; 265:116049. [PMID: 38185054 DOI: 10.1016/j.ejmech.2023.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Camptothecin is a pentacyclic natural alkaloid that inhibits the hTop1 enzyme involved in DNA transcription and cancer cell growth. Camptothecin structure pitfalls prompted us to design new congeners using a structure simplification strategy to reduce the ring extension number from pentacyclic to tetracyclic while maintaining potential stacking of the new compounds with the DNA base pairs at the Top1-mediated cleavage complex and aqueous solubility, as well as minimizing compound-liver toxicity. The principal axis of this study was the verification of hTop1 inhibiting activity as a possible mechanism of action and the elaboration of new simplified inhibitors with improved pharmacodynamic and pharmacokinetic profiling using three structure panels (A-C) of (isoquinolinoimidazoquinazoline), (imidazoquinazoline), and (imidazoisoquinoline), respectively. DNA relaxation assay identified five compounds as hTop1 inhibitors belonging to the imidazoisoquinolines 3a,b, the imidazoquinazolines 12, and the isoquinolinoimidazoquinazolines 7a,b. In an MTT cytotoxicity assay against different cancer cell lines, compound 12 was the most potent against HOS bone cancer cells (IC50 = 1.47 μM). At the same time, the other inhibitors had no detectable activity against any cancer cell type. Compound (12) demonstrated great penetrating power in the HOS cancer cells' 3D-multicellular tumor spheroid model. Bioinformatics research of the hTop1 gene revealed that the TP53 cell proliferative gene is in the network of hTop1. The finding is confirmed empirically using the gene expression assay that proved the increase in p53 expression. The impact of structure simplification on compound 12 profile, characterized by the absence of acute oral liver toxicity when compared to Doxorubicin as a standard inhibitor, the lethal dose measured on Swiss Albino female mice and reported at LD50 = 250 mg/kg, and therapeutic significance in reducing colon adenocarcinoma tumor volume by 75.36 % after five weeks of treatment with compound 12. The molecular docking solutions of the active CPT-based derivative 12 and the inactive congener 14 into the active site of hTop1 and the activity cliffing of such MMP directed us to recommend the addition of HBD and HBA variables to compound 12 imidazoquinazoline core scaffold to enhance the potency via hydrogen bond formation with the major groove amino acids (Asp533, Lys532) as well as maintaining the hydrogen bond with the minor groove amino acid Arg364.
Collapse
Affiliation(s)
- Ahmed I Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| | - Brittnee Cagle-White
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - May H Abdel Aziz
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - Mahmoud Kh Hanafy
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt; Research Centre for Idling Brain Science, Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 930-0194, Japan
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Nadia M Hamdy
- Biochemistry Dept., Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt.
| |
Collapse
|
5
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, synthesis, molecular modelling and antitumor evaluation of S-glucosylated rhodanines through topo II inhibition and DNA intercalation. J Enzyme Inhib Med Chem 2023; 38:2163996. [PMID: 36629439 PMCID: PMC9848385 DOI: 10.1080/14756366.2022.2163996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt,CONTACT Ahmed I. Khodair Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Fatimah M. Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Siham A. Al-Issa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Saied S, Shaldam M, Elbadawi MM, Giovannuzzi S, Nocentini A, Almahli H, Salem R, Ibrahim TM, Supuran CT, Eldehna WM. Discovery of indolinone-bearing benzenesulfonamides as new dual carbonic anhydrase and VEGFR-2 inhibitors possessing anticancer and pro-apoptotic properties. Eur J Med Chem 2023; 259:115707. [PMID: 37556946 DOI: 10.1016/j.ejmech.2023.115707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
In the current medical era, the utilization of a single small molecule to simultaneously target two distinct molecular targets is emerging as a highly effective strategy in the battle against cancer. Carbonic Anhydrase (CA) and Vascular-Endothelial Growth Factor (VEGF) are genes that are activated in response to low oxygen levels (hypoxia) and play a role in the development and progression of tumors in hypoxic conditions. Herein we report the design, synthesis, and biological assessment of a series of novel indolinone-based benzenesulfonamides (8a-k, 11a-d, 15a-d, and 16) as potential dual inhibitors for cancer-associated hCA IX/XII and VEGFR-2. All the synthesized sulfonamides were assessed for their inhibitory effect against four CA isoforms I, II, IX, and XII where they displayed varying degrees of hCA inhibition. The most effective and selective hCA IX and XII inhibitors 8g, 8j and 15b were chosen to be tested for their in vitro inhibitory impact against VEGFR-2 as well as their antiproliferative impact against VEGFR-2 overexpressing MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, molecular docking studies were conducted within the hCA IX, XII, and VEGFR-2 active sites to explain the observed inhibitory results.
Collapse
Affiliation(s)
- Samaa Saied
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
7
|
Eldehna WM, Mohammed EE, Al-Ansary GH, Berrino E, Elbadawi MM, Ibrahim TM, Jaballah MY, Al-Rashood ST, Binjubair FA, Celik M, Nocentini A, Elbarbry FA, Sahin F, Abdel-Aziz HA, Supuran CT, Fares M. Design and synthesis of 6-arylpyridine-tethered sulfonamides as novel selective inhibitors of carbonic anhydrase IX with promising antitumor features toward the human colorectal cancer. Eur J Med Chem 2023; 258:115538. [PMID: 37321108 DOI: 10.1016/j.ejmech.2023.115538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO2 hydrase assay. In addition, the anticancer activity was firstly explored against a panel of 57 cancer cell lines at the USA NCI-Developmental Therapeutic Program. Compound 8g emerged as the best anti-proliferative candidate with mean GI% value equals 44. Accordingly, a cell viability assay (MTS) for 8g was applied on colorectal HCT-116 and HT-29 cancer cell lines as well as on the healthy HUVEC cells. Thereafter, Annexin V-FITC apoptosis detection, cell cycle, TUNEL, and qRT-PCR, colony formation, and wound healing assays were applied to gain mechanistic insights and to understand the behavior of colorectal cancer cells upon the treatment of compound 8g. Also, a molecular docking analysis was conducted to provide in silico insights into the reported hCA IX inhibitory activity and selectivity.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Eslam E Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Emanuela Berrino
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Meltem Celik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Fawzy A Elbarbry
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR, 97123, USA
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad, Ataşehir, TR-34755, Istanbul, Turkey
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
8
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, Synthesis, Computational Investigations, and Antitumor Evaluation of N-Rhodanine Glycosides Derivatives as Potent DNA Intercalation and Topo II Inhibition against Cancer Cells. ACS OMEGA 2023; 8:13300-13314. [PMID: 37065038 PMCID: PMC10099454 DOI: 10.1021/acsomega.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen and sulfur glycosylation was carried out via the reaction of rhodanine (1) with α-acetobromoglucose 3 under basic conditions. Deacetylation of the protected nitrogen nucleoside 4 was performed with CH3ONa in CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleoside 6. Further, deacetylation of the protected sulfur nucleoside 5 was performed with CH3ONa in CH3OH with the cleavage of the rhodanine ring to give the hydrolysis product 7. The protected nitrogen nucleosides 11a-f were produced by condensing the protected nitrogen nucleoside 4 with the aromatic aldehydes 10a-f in C2H5OH while using morpholine as a secondary amine catalyst. Deacetylation of the protected nitrogen nucleosides 11a-f was performed with NaOCH3/CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleosides 12a-f. NMR spectroscopy was used to designate the anomers' configurations. To examine the electrical and geometric properties derived from the stable structure of the examined compounds, molecular modeling and DFT calculations using the B3LYP/6-31+G (d,p) level were carried out. The quantum chemical descriptors and experimental findings showed a strong connection. The IC50 values for most compounds were very encouraging when evaluated against MCF-7, HepG2, and A549 cancer cells. Interestingly, IC50 values for 11a, 12b, and 12f were much lower than those for Doxorubicin (7.67, 8.28, 6.62 μM): (3.7, 8.2, 9.8 μM), (3.1, 13.7, 21.8 μM), and (7.17, 2.2, 4.5 μM), respectively. Against Topo II inhibition and DNA intercalation, when compared to Dox (IC50 = 9.65 and 31.27 μM), compound 12f showed IC50 values of 7.3 and 18.2 μM, respectively. In addition, compound 12f induced a 65.6-fold increase in the rate of apoptotic cell death in HepG2 cells, with the cell cycle being arrested in the G2/M phase as a result. Additionally, it upregulated the apoptosis-mediated genes of P53, Bax, and caspase-3,8,9 by 9.53, 8.9, 4.16, 1.13, and 8.4-fold change, while it downregulated the Bcl-2 expression by 0.13-fold. Therefore, glucosylated Rhodanines may be useful as potential therapeutic candidates against cancer because of their topoisomerase II and DNA intercalation activity.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry
Department, Faculty of Science, Kafrelsheikh
University, 33516 Kafrelsheikh, Egypt
| | - Fatimah M. Alzahrani
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical
Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, 6632110 Tanta, Egypt
| | - Siham A. Al-Issa
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry
Department (Biochemistry program), Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| |
Collapse
|
9
|
Akree LS, Amin ZA, Ahmad HO. In silico and in vivo hepatoprotective activity of the synthesized 5-benzylidene-2-thiohydantoin against diethylnitrosamine-induced liver injury in a rat model. Sci Rep 2023; 13:4681. [PMID: 36949140 PMCID: PMC10033926 DOI: 10.1038/s41598-023-27725-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/06/2023] [Indexed: 03/24/2023] Open
Abstract
In the present study, the hepatoprotective effect of 5-benzylidine-2-thiohydantoin (5B2T), a unique derivative of the thiohydantoin group, on liver injury induced by diethylnitrosamine (DEN) in male rats was investigated. The experimental animals were divided into three groups, each with 14 rats. Rats in group I were considered to be controls and received only 10% Tween 80. Rats in group II were injected with 200 mg/kg DEN intraperitoneally. Rats in group III were injected with a single dose of DEN 200 mg/kg intraperitoneally and received the treatment orally (50 mg/kg, 5B2T) for two durations, 3 and 6 weeks. At the end of the experiment, blood was collected for the analysis of liver function and pro-inflammatory cytokine IL-6 and tumor necrosis factor α (TNF-α) levels. Additionally, liver specimens were used for histopathological examination and immunohistochemistry. The single intraperitoneal injection of 200 mg/kg DEN into rats resulted in significant elevation of serum enzyme levels of AST, ALT and ALP, which are indicators of hepatocellular damage, along with elevation in TNF-α and IL-6 in the DEN group. The results of both LFTs and ELISA in the treatment group showed improvements and a decline in the levels of the markers. Histopathological examination showed fibrosis, necrosis and infiltration of inflammatory cells in the DEN group, with lower intensity in the treatment group. The results of immunohistochemical staining revealed strong positive staining of both HSA and Ki-67 antibodies in the DEN group, with much lower intensity in the treatment group. The results of the docking study indicated that 5B2T has a remarkable interaction with TNF-α (PDB ID: 1TNF) and human IL-6 (PDB ID: 1IL6) with binding site energies of - 7.1 and - 6.1 (kcal/mol), respectively. The correct absorption and binding between the drug and the receptor was evaluated through computerized molecular docking by using the AutoDock program. The conclusion of the results from the current study reflected the interesting hepatoprotective abilities of 5B2T against DEN-induced hepatocellular damage and cancer in experimental rats.
Collapse
Affiliation(s)
- Lana S Akree
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbīl, 44001, Iraq
| | - Zahra A Amin
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbīl, 44001, Iraq.
| | - Hiwa O Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbīl, 44001, Iraq
| |
Collapse
|
10
|
Abd El-Fattah W, Abu Ali OA, Alfaifi MY, Shati AA, Eldin I. Elbehairi S, Abu Almaaty AH, Elshaarawy RF, Fayad E. New Mn(III)/Fe(III) complexes with thiohydantoin-supported imidazolium ionic liquids for breast cancer therapy. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
11
|
Elsayed GH, Fahim AM, Khodair AI. Synthesis, anti-cancer activity, gene expression and docking stimulation of 2-thioxoimidazolidin-4-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Gunal SE, Azizoglu I, Arica O, Haslak ZP, Aviyente V, Dogan I. Solvent dependent hindered rotation versus epimerization in axially chiral thiohydantoin derivatives: an experimental and a computational study. Org Biomol Chem 2022; 20:7622-7631. [PMID: 36111614 DOI: 10.1039/d2ob01025a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Benzyl-3-(o-aryl)-2-thiohydantoin and 5-isobutyl-3-(o-aryl)-2-thiohydantoin derivatives (o-aryl = o-tolyl and o-bromophenyl) have been synthesized by reacting o-aryl isothiocyanates with S-phenylalanine methyl ester hydrochloride or with S-leucine methyl ester hydrochloride in the presence of triethylamine (TEA). The synthesized compounds have a chirality center at C5 of the heterocyclic ring and a chirality axis, the N3-C(aryl) bond. The axially chiral compounds were shown to exist in unequal amounts of SM, SP, RM and RP stereoisomeric forms with a high prevalence of the P isomers over the M isomers. The isomeric assignments were done by comparing the 1H NMR spectra with the HPLC chromatograms. The stereoisomers were resolved micropreparatively by HPLC on chiral stationary phases and the interconversion of the single isomers has been investigated. The conversion type has been determined as epimerization or rotation by the HPLC analyses. It has been found that although the stereoisomers converted to each other only by rotation in toluene, in ethanol epimerization (racemization at C5 of the heteroring) was accompanied with rotation depending on the duration, temperature of the thermal interconversion experiment and the nature of the ortho substituent. The occurrence of epimerization was also proved through H/D exchange reactions via1H NMR experiments done in CD3OD. The rotation and epimerization mechanisms of synthesized compounds were further elucidated by Density Functional Theory (DFT) calculations at M062X/6-311 + G** level of theory and the results were shown to be in harmony with experimental findings.
Collapse
Affiliation(s)
- Sule Erol Gunal
- Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey.
| | - Ipek Azizoglu
- Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey.
| | - Oya Arica
- Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey.
| | | | - Viktorya Aviyente
- Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey.
| | - Ilknur Dogan
- Department of Chemistry, Bogaziçi University, Bebek, Istanbul, Turkey.
| |
Collapse
|
13
|
Nafie MS, Khodair AI, Hassan HAY, El-Fadeal NMA, Bogari HA, Elhady SS, Ahmed SA. Evaluation of 2-Thioxoimadazolidin-4-one Derivatives as Potent Anti-Cancer Agents through Apoptosis Induction and Antioxidant Activation: In Vitro and In Vivo Approaches. Molecules 2021; 27:83. [PMID: 35011314 PMCID: PMC8746798 DOI: 10.3390/molecules27010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings.
Collapse
Affiliation(s)
- Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed I. Khodair
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Hebat Allah Y. Hassan
- Institute of Biotechnology for Graduate Studies & Research, Suez Canal University, Ismailia 41522, Egypt;
| | - Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Safwat A. Ahmed
- Institute of Biotechnology for Graduate Studies & Research, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|