1
|
Chedupaka R, Audipudi AV, Sangolkar AA, Mamidala S, Venkatesham P, Penta S, Vedula RR. Design, synthesis, molecular docking, and dynamic studies of novel thiazole derivatives incorporating benzimidazole moiety and assessment as antibacterial agents. Mol Divers 2024; 28:1565-1576. [PMID: 37490125 DOI: 10.1007/s11030-023-10675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
A general and sustainable approach for the synthesis of benzimidazole-thiazole compounds via an efficient, one-pot, domino, pseudo-four-component reaction using 5-amino-2-mercaptobenzimidazole, aralkyl halides, ammonium thiocyanate, and substituted α-bromo-acetophenones in glacial acetic acid at ambient temperature to give final compounds (4a-p) in good yields in shorter time. The spectral data of synthesized compounds were evaluated by analytical and spectral techniques (IR, 1H-NMR, 13C-NMR, and ESI-HRMS). Further, some of the synthesized compounds were screened for their in-vitro antibacterial activity studies using the agar well diffusion method against Gram-positive Streptococcus pneumoniae (2451) bacteria and Gram-negative Proteous mirabilis (2081) bacteria. Based on the MIC results, it was observed that the most active compounds 4b, 4e, 4f, and 4k show promising antibacterial activity with the zone of inhibition values of 2.85 cm 2.75 cm, 3.6 cm, and 3.3 cm against both Gram-negative and positive bacteria cell lines, respectively. Further, we have also insight into the molecular simulation studies, based on the binding results, compound 4i showed stable binding interactions with streptomycin drug with the active site of the gyrase protein (PDB ID: 1KIJ). The structure-activity relationship (SAR) studies of all the title scaffolds were also established. The antibacterial activity, molecular docking studies, and molecular dynamic simulations of the title compounds suggested that these are promising antibacterial active skeletons.
Collapse
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Amrutha V Audipudi
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, A.P., 522510, India
| | | | - Srikanth Mamidala
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Papisetti Venkatesham
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Santhosh Penta
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
2
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Skoptsova AA, Geronikaki A, Novichikhina NP, Sulimov AV, Ilin IS, Sulimov VB, Bykov GA, Podoplelova NA, Pyankov OV, Shikhaliev KS. Design, Synthesis, and Evaluation of New Hybrid Derivatives of 5,6-Dihydro-4 H-pyrrolo[3,2,1- ij]quinolin-2(1 H)-one as Potential Dual Inhibitors of Blood Coagulation Factors Xa and XIa. Molecules 2024; 29:373. [PMID: 38257286 PMCID: PMC10818416 DOI: 10.3390/molecules29020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases caused by blood coagulation system disorders are one of the leading causes of morbidity and mortality in the world. Research shows that blood clotting factors are involved in these thrombotic processes. Among them, factor Xa occupies a key position in the blood coagulation cascade. Another coagulation factor, XIa, is also a promising target because its inhibition can suppress thrombosis with a limited contribution to normal hemostasis. In this regard, the development of dual inhibitors as new generation anticoagulants is an urgent problem. Here we report the synthesis and evaluation of novel potential dual inhibitors of coagulation factors Xa and XIa. Based on the principles of molecular design, we selected a series of compounds that combine in their structure fragments of pyrrolo[3,2,1-ij]quinolin-2-one and thiazole, connected through a hydrazine linker. The production of new hybrid molecules was carried out using a two-stage method. The reaction of 5,6-dihydropyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide gave the corresponding hydrazinocarbothioamides. The reaction of the latter with DMAD led to the target methyl 2-(4-oxo-2-(2-(2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates in high yields. In vitro testing of the synthesized molecules revealed that ten of them showed high inhibition values for both the coagulation factors Xa and XIa, and the IC50 value for some compounds was also assessed. The resulting structures were also tested for their ability to inhibit thrombin.
Collapse
Affiliation(s)
- Anna A. Skoptsova
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nadezhda P. Novichikhina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| | - Alexey V. Sulimov
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Ivan S. Ilin
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Vladimir B. Sulimov
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.V.S.); (I.S.I.); (V.B.S.)
| | - Georgii A. Bykov
- Department of Biophysics at the Faculty of Physics, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | | | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia; (A.A.S.); (N.P.N.)
| |
Collapse
|
4
|
El-Rayyes A, Soliman AM, Saeed A. Synthesis and Anticancer Evaluation of New Thiazole and Thiadiazole Derivatives Bearing Acetanilide Moiety. RUSS J GEN CHEM+ 2022; 92:2132-2144. [PMID: 36408422 PMCID: PMC9643967 DOI: 10.1134/s1070363222100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 09/08/2024]
Abstract
New thiazole and thiadiazole derivatives bound to the acetanilide moiety were synthesized and evaluated for their cytotoxic activity. The precursor N-(4-acetamidophenyl)-N'-phenylthiourea (2) was cyclocondensed with ethyl bromoacetate to afford a mixture of the two isomers, 2-(4-acetamidophenylimino)-3-phenylthiazolidin-4-one (3a, 23%) and 3-(4-acetamidophenyl)-2-phenyliminothiazolidin-4-one (3b, 71%). The Knoevenagel reaction of 3b with various aromatic aldehydes afforded 5-arylidene-2-phenyliminothiazolidin-4-one derivatives 5a-5e. Intramolecular cyclization of thiourea scaffold 2 with chloroacetone and/or phenacyl chloride gave the conforming thiazole derivatives 6a and 6b. A new series of thiadiazole derivatives 9a-9c and 11a-11c was synthesized by the reaction of N-(4-acetamidophenyl)-N'-phenylthiourea (2) with selected derivatives of hydrazonoyl halide in ethanol and triethylamine. The structures of the synthesized thiazole and thiadiazole compounds were elucidated by their compatible spectral data. The cytotoxic activity of the synthesized thiazole and thiadiazole derivatives was screened against four human cancer cell lines and showed promising results. Thiazolidin-4-one compound 5d showed the strongest cytotoxic effects on hepatocellular carcinoma (IC50 = 8.80 ± 0.31 μg/mL), mammary gland breast cancer (IC50 = 7.22 ± 0.65 μg/mL) and colorectal carcinoma (IC50 = 9.35 ± 0.61 μg/mL) cell lines.
Collapse
Affiliation(s)
- Ali El-Rayyes
- Chemistry Department, Faculty of Science, Northern Border University, 1321 Arar, Saudi Arabia
| | - Ahbarah M. Soliman
- Department of Chemistry, Faculty of Science, 919 Omar Al-Mukhtar University, Libya
| | - Ali Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
- Department of Chemistry, Faculty of Science, Sa’adah University, 71333 Sa’adah, Yemen
| |
Collapse
|
5
|
Rezvanian A, Khodadadi B, Tafreshi S. Use of Dialkyl Acetylenedicarboxylates in the Multicomponent Synthesis of Heterocyclic Structures. ChemistrySelect 2022. [DOI: 10.1002/slct.202202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atieh Rezvanian
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| | - Behnoosh Khodadadi
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| | - Sepideh Tafreshi
- Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran Iran
| |
Collapse
|