1
|
Rasul R, Mahmood T, Ayub K, Joya KS, Anwar F, Saari N, Nawaz R, Gilani MA. Alkali metals doped cycloparaphenylene nanohoops: Promising nonlinear optical materials with enhanced performance. Heliyon 2023; 9:e21508. [PMID: 38027972 PMCID: PMC10654151 DOI: 10.1016/j.heliyon.2023.e21508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.
Collapse
Affiliation(s)
- Ruqiya Rasul
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P. O. Box 32038, Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha-40100, Pakistan
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R. Nawaz
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, 32093 Hawally, Kuwait
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| |
Collapse
|
2
|
Ravichandran D, Ranjani M, Prabu Sankar G, Shankar R, Karthi M, Selvakumar S, Prabhakaran R. Coumarin-Picolinohydrazone derived Schiff base as fluorescent sensor(OFF-ON) for detection of Al3+ ion: Synthesis, Spectral and theoretical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Intra-ring proton transfer effect on the Structure-NLO property relationships of phthalocyanine derivatives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Gond M, Pandey SK, Chandra S, Tiwari N, Bharty M, Maiti B, Katiyar D, Butcher R. Zinc(II) catalyzed synthesis of 2-(4-methoxyphenyl)-5-(2-pyridyl)-1,3,4-thiadiazole: Characterizations, crystal structure, DFT calculation, Hirshfeld surface analysis, and molecular docking analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Louis H, Mathias GE, Unimuke TO, Emori W, Ling L, Owen AE, Adeyinka AS, Ntui TN, Cheng CR. Isolation, characterization, molecular electronic structure investigation, and in-silico modeling of the anti-inflammatory potency of trihydroxystilbene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Priscilla J, Dhas DA, Joe IH, Balachandran S. Spectroscopic (FT-IR, FT-Raman) investigation, topological (QTAIM, RDG, ELF) analysis, drug-likeness and anti-inflammatory activity study on 2-methylaminobenzoic acid alkaloid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Khaled A, Kadri R, Kadri M, Berredjem M. New Cu(II) and Zn(II) complexes with diethyl phenyl (N-phenylsulfamoylamino) methyl phosphonate: Synthesis, characterisation, DFT/M11 studies, NBO, DOS, QTAIM and RDG analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Spectroscopic, quantum chemical and molecular docking studies on friedelin, the major triterpenoid isolated from Garcinia imberti. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Synthesis, crystal structure, DFT and molecular docking studies of N-acetyl-2,4-[diaryl-3-azabicyclo[3.3.1]nonan-9-yl]-9-spiro-4'-acetyl-2'-(acetylamino)-4',9-dihydro-[1',3',4']-thiadiazoles: A potential SARS-nCoV-2 Mpro (COVID-19) inhibitor. J Mol Struct 2022; 1259:132747. [PMID: 35250091 PMCID: PMC8888462 DOI: 10.1016/j.molstruc.2022.132747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
Abstract
In this paper, we describe the synthesis and crystal structure analysis of N-acetyl-2,4-[diphenyl-3-azabicyclo[3.3.1]nonan-9-yl]-9-spiro-4′-acetyl-2′-(acetylamino)-4′,9-dihydro-[1′,3′,4′]-thiadiazole (3a) and N-acetyl- 2,4-[bis(p-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-yl]-9-spiro-4′-acetyl-2′-(acetylamino)-4′,9-dihydro-[1′,3′,4′]-thiadiazole (3b). The title compounds 3a and 3b are characterized by 1D NMR and single crystal x-ray diffraction analysis. Non-covalent interactions in a molecule were identified by Hirshfeld surface (dnorm contacts and 2D fingerprint plot) analysis. In addition, the existence of chalcogen bond (S•••O bond) in the molecular structures (3a and 3b) are described by NCI-RDG and QTAIM analysis. NBO analysis is employed to describe the orbital interactions and electron transfer between sulfur and oxygen atoms. Molecular docking is carried out for compounds 3a and 3b with COVID-19 viral protein SARS-nCoV-2 Mpro (PDB ID: 6LU7).
Collapse
|