1
|
Alkorbi F, Alshareef SA, Abdelaziz MA, Omer N, Jame R, Alatawi IS, Ali AM, Omran OA, Bakr RB. Multicomponent reaction for synthesis, molecular docking, and anti-inflammatory evaluation of novel indole-thiazole hybrid derivatives. Mol Divers 2024:10.1007/s11030-024-10969-8. [PMID: 39143406 DOI: 10.1007/s11030-024-10969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
In this article, novel thiazol-indolin-2-one derivatives 4a-f have been synthesized via treatment of thiosemicarbazide (1) with some isatin derivative 2a-f and N-(4-(2-bromoacetyl)phenyl)-4-tolyl-sulfonamide (3) under reflux in ethanol in the presence of triethyl amine (TEA). The structures of new products were elucidated by elemental and spectral analyses. Moreover, all compounds were investigated for their in vivo anti-inflammatory activity using celecoxib as a reference drug. The target compound 4b was the most active anti-inflammatory candidate and exhibited higher edema inhibition (EI = 38.50%) than that recorded by celecoxib (EI = 34.58%) after 3 h. Furthermore, the most active compounds 4b and 4f were subjected to a molecular docking study inside COX-2 enzyme to show their binding interactions. Both compounds 4b and 4f showed good fitting into COX-2 binding site with docking energy scores - 11.45 kcal/mol and - 10.48 kcal/mol, respectively which indicated that compound 4b revealed the most promising and effective anti-inflammatory potential.
Collapse
Affiliation(s)
- Faeza Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, 68342, Sharurah, Saudi Arabia
| | - Shareefa Ahmed Alshareef
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Alwajh College, Tabuk, 71491, Saudi Arabia
| | - Ali M Ali
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Sow S, Thiam M, Odame F, Thiam EI, Diouf O, Ellena J, Gaye M, Tshentu Z. Crystal structure of 1-(1,3-benzo-thia-zol-2-yl)-3-(4-bromo-benzo-yl)thio-urea. Acta Crystallogr E Crystallogr Commun 2024; 80:663-666. [PMID: 38845707 PMCID: PMC11151310 DOI: 10.1107/s2056989024004742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
The chemical reaction of 4-bromo-benzoyl-chloride and 2-amino-thia-zole in the presence of potassium thio-cyanate yielded a white solid formulated as C15H10BrN3OS2, which consists of 4-bromo-benzamido and 2-benzo-thia-zolyl moieties connected by a thio-urea group. The 4-bromo-benzamido and 2-benzo-thia-zolyl moieties are in a trans conformtion (sometimes also called s-trans due to the single bond) with respect to the N-C bond. The dihedral angle between the mean planes of the 4-bromo-phenyl and the 2-benzo-thia-zolyl units is 10.45 (11)°. The thio-urea moiety, -C-NH-C(=S) -NH- fragment forms a dihedral angle of 8.64 (12)° with the 4-bromo-phenyl ring and is almost coplanar with the 2-benzo-thia-zolyl moiety, with a dihedral angle of 1.94 (11)°. The mol-ecular structure is stabilized by intra-molecular N-H⋯O hydrogen bonds, resulting in the formation of an S(6) ring. In the crystal, pairs of adjacent mol-ecules inter-act via inter-molecular hydrogen bonds of type C-H⋯N, C-H⋯S and N-H⋯S, resulting in mol-ecular layers parallel to the ac plane.
Collapse
Affiliation(s)
- Salif Sow
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mariama Thiam
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Felix Odame
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Elhadj Ibrahima Thiam
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Ousmane Diouf
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Javier Ellena
- Departamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
| | - Mohamed Gaye
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
3
|
Khadri MJN, Ramu R, Simha NA, Khanum SA. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophene-pyrazole candidates as COX, 5-LOX, and TNF-α inhibitors. Inflammopharmacology 2024; 32:693-713. [PMID: 37985602 DOI: 10.1007/s10787-023-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.
Collapse
Affiliation(s)
- M J Nagesh Khadri
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - N Akshaya Simha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
4
|
Navarrete E, Morales P, Muñoz-Osses M, Vásquez-Martínez Y, Godoy F, Maldonado T, Martí AA, Flores E, Mascayano C. Evaluating the inhibitory activity of ferrocenyl Schiff bases derivatives on 5-lipoxygenase: Computational and biological studies. J Inorg Biochem 2023; 245:112233. [PMID: 37141763 DOI: 10.1016/j.jinorgbio.2023.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 μM for (3a) and 0.73 ± 0.06 μM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.
Collapse
Affiliation(s)
| | - Pilar Morales
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | | | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Fernando Godoy
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | - Tamara Maldonado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Angel A Martí
- Department of Chemistry, Bioengineering and Materials Science & Nanoengineering, Rice University, Houston, TX 77005, United States
| | - Erick Flores
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile.
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
5
|
Upadhyay R, Khalifa Z, Patel AB. Indole Fused Benzimidazole Hybrids: A Promising Combination to Fulfill Pharmacological Significance. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B. Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
6
|
One-pot reproducible Sonosynthesis of trans-[Br(NՈN’)Cu(μBr)2Cu(NՈN’)Br] dimer:[H….Br S(9)] synthons, spectral, DFT/XRD/HSA, thermal, docking and novel LOX/COX enzyme inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|