1
|
Morampudi RK, Neelakandan V, Naveen Kumar B, Indla E. Evaluation of Cognitive and Synaptic Restoration in Diabetic Rats Treated With Emblica officinalis, Clitoria ternatea, Vitamin C, and Metformin. Cureus 2024; 16:e75866. [PMID: 39822457 PMCID: PMC11736978 DOI: 10.7759/cureus.75866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Diabetes is known to cause cognitive impairments and synaptic dysfunction. This study investigates the effects of Emblica officinalis (EO), Clitoria ternatea (CT), Vitamin C, and metformin on cognitive function and synaptic density (SYN) in diabetic rats. This work aims to evaluate the impact of various treatments on spatial learning, memory, and SYN in a diabetic rat model. METHODS The Morris water maze test was used to assess spatial learning and memory at four time points (Days 1, 3, 14, and 21). SYN was measured using optical density to assess SYN expression. Eight experimental groups were included: Non-diabetic Control, Diabetic Control, Diabetic + EO, Diabetic + CT, Diabetic + Vitamin C, Diabetic + Metformin, Non-diabetic + EO, and Non-diabetic + CT. RESULTS On Day 1, the Diabetic Control group exhibited significantly longer latency times, indicating cognitive impairment. Diabetic + EO and Diabetic + CT showed the most significant improvements in cognitive performance compared to other diabetic groups, while Diabetic + Vitamin C and Diabetic + Metformin were less effective. On Day 3, cognitive performance in the diabetic groups improved, but none reached the level of Non-diabetic controls. On Day 14, EO and CT were again the most effective in reducing latency times, followed by Metformin. By Day 21, EO and CT showed significant improvements in cognitive function, with Metformin outperforming Vitamin C. SYN expression was significantly higher in the Non-diabetic + CT and Non-diabetic + EO groups, and these treatments also enhanced SYN expression in diabetic rats, with Metformin showing the greatest improvement. CONCLUSION The results suggest that EO and CT offer significant therapeutic potential for mitigating cognitive deficits and enhancing SYN in diabetic animals. Although metformin also improved cognitive function and SYN, it exhibited the most robust restorative effects. These findings highlight the potential of herbal treatments like EO and CT for managing cognitive dysfunction in diabetes.
Collapse
|
2
|
Chadaeva I, Kozhemyakina R, Shikhevich S, Bogomolov A, Kondratyuk E, Oshchepkov D, Orlov YL, Markel AL. A Principal Components Analysis and Functional Annotation of Differentially Expressed Genes in Brain Regions of Gray Rats Selected for Tame or Aggressive Behavior. Int J Mol Sci 2024; 25:4613. [PMID: 38731836 PMCID: PMC11083694 DOI: 10.3390/ijms25094613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The process of domestication, despite its short duration as it compared with the time scale of the natural evolutionary process, has caused rapid and substantial changes in the phenotype of domestic animal species. Nonetheless, the genetic mechanisms underlying these changes remain poorly understood. The present study deals with an analysis of the transcriptomes from four brain regions of gray rats (Rattus norvegicus), serving as an experimental model object of domestication. We compared gene expression profiles in the hypothalamus, hippocampus, periaqueductal gray matter, and the midbrain tegmental region between tame domesticated and aggressive gray rats and revealed subdivisions of differentially expressed genes by principal components analysis that explain the main part of differentially gene expression variance. Functional analysis (in the DAVID (Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources database) of the differentially expressed genes allowed us to identify and describe the key biological processes that can participate in the formation of the different behavioral patterns seen in the two groups of gray rats. Using the STRING- DB (search tool for recurring instances of neighboring genes) web service, we built a gene association network. The genes engaged in broad network interactions have been identified. Our study offers data on the genes whose expression levels change in response to artificial selection for behavior during animal domestication.
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | | | - Anton Bogomolov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Siberian Federal Scientific Centre of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk 630501, Russia
- Research Institute of Clinical and Experimental Lymphology-Branch of Institute of Cytology and Genetics, Novosibirsk 630117, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Arcady L Markel
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Li T, Jia Y, Fu J, Fu Z, Qiao Z, Liu X, Lv T, Tang R, Yang G. P53-induced GAP-43 Upregulation in Primary Cortical Neurons of Rats. Protein Pept Lett 2024; 31:229-235. [PMID: 38288820 DOI: 10.2174/0109298665263864231221071712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 06/14/2024]
Abstract
OBJECTIVES In this study, we employed an in vitro culturing technique to investigate the impact of p53 on the modulation of growth-associated protein-43 (GAP-43) within the primary cortical neurons of rat specimens. METHODS (1) Within the first 24 hours after birth, the bilateral cortex was extracted from newborn Wistar rats and primary cortical neurons were cultured and identified. (2) The changes in the mRNA and protein expressions of GAP-43 induced by p53 in rat primary cortical neurons cultured in vitro were identified utilizing real-time polymerase chain reaction and western blot techniques. RESULTS (1) Lentiviral transfection of p53 within primary cortical neurons of rats elicited elevated levels of both mRNA and protein expressions of GAP-43, consequently culminating in a noteworthy augmentation of p53 expression. (2) The introduction of a p53 inhibitor in rat primary cortical neurons resulted in a reduction in both mRNA and protein expressions of GAP-43. CONCLUSION Within primary rat cortical neurons, p53 has the potential to prompt an augmentation in both the transcriptional and protein expression levels of the GAP-43 protein.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yuexin Jia
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Junxian Fu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Zhuo Fu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Zhidong Qiao
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Xiaoyang Liu
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Ting Lv
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Rong Tang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Guanglu Yang
- Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| |
Collapse
|
4
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
5
|
Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci 2023; 13:brainsci13020286. [PMID: 36831830 PMCID: PMC9954059 DOI: 10.3390/brainsci13020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Explosive blasts are associated with neurological consequences as a result of blast waves impact on the brain. Yet, the neuropathologic and molecular consequences due to blast waves vs. blunt-TBI are not fully understood. An explosive-driven blast-generating system was used to reproduce blast wave exposure and examine pathological and molecular changes generated by primary wave effects of blast exposure. We assessed if pre- and post-synaptic (synaptophysin, PSD-95, spinophilin, GAP-43), neuronal (NF-L), glymphatic (LYVE1, podoplanin), myelin (MBP), neurovascular (AQP4, S100β, PDGF) and genomic (DNA polymerase-β, RNA polymerase II) markers could be altered across different brain regions of double blast vs. sham animals. Twelve male rats exposed to two consecutive blasts were compared to 12 control/sham rats. Western blot, ELISA, and immunofluorescence analyses were performed across the frontal cortex, hippocampus, cerebellum, and brainstem. The results showed altered levels of AQP4, S100β, DNA-polymerase-β, PDGF, synaptophysin and PSD-95 in double blast vs. sham animals in most of the examined regions. These data indicate that blast-generated changes are preferentially associated with neurovascular, glymphatic, and DNA repair markers, especially in the brainstem. Moreover, these changes were not accompanied by behavioral changes and corroborate the hypothesis for which an asymptomatic altered status is caused by repeated blast exposures.
Collapse
|