1
|
Wise JTF, Lu H, Meaza I, Wise SS, Williams AR, Wise JY, Mason MD, Wise JP. Prolonged Particulate Hexavalent Chromium Exposure Induces DNA Double-Strand Breaks and Inhibits Homologous Recombination Repair in Primary Rodent Lung Cells. Biol Trace Elem Res 2024; 202:5653-5663. [PMID: 38499919 PMCID: PMC11408706 DOI: 10.1007/s12011-024-04136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a known lung carcinogen and a driving mechanism in human lung cells for Cr(VI)-induced lung cancer is chromosome instability, caused by prolonged Cr(VI) exposure inducing DNA double-strand breaks, while simultaneously inhibiting the repair of these breaks. In North Atlantic right whales, Cr(VI) induces breaks but does not inhibit repair. It is unclear if this repair inhibition is specific to human lung cells or occurs in other species, as it has only been considered in humans and North Atlantic right whales. We evaluated these outcomes in rodent cells, as rodents are an experimental model for metal-induced lung carcinogenesis. We used a guinea pig lung fibroblast cell line, JH4 Clone 1, and rat lung fibroblasts. Cells were exposed to two different particulate Cr(VI) compounds, ranging from 0 to 0.5 ug/cm2, for 24 or 120 h and assessed for cytotoxicity, DNA double-strand breaks, and DNA double-strand break repair. Both particulate Cr(VI) compounds induced a concentration-dependent increase in cytotoxicity and DNA double-strand breaks after acute and prolonged exposures. Notably, while the repair of Cr(VI)-induced DNA double-strand breaks increased after acute exposure, the repair of these breaks was inhibited after prolonged exposure. These results are consistent with outcomes in human lung cells indicating rodent cells respond like human cells, while whale cells have a markedly different response.
Collapse
Affiliation(s)
- James T F Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Jamie Young Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA
| | - Michael D Mason
- Department of Chemical and Biological Engineering and the Institute for Molecular Biophysics, University of Maine, Orono, ME, 04469, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
2
|
Lu H, Wise SS, Speer RM, Croom-Perez TJ, Toyoda JH, Meaza I, Williams A, Wise JP, Kouokam JC, Young Wise J, Hoyle GW, Zhu C, Ali AM, Wise JP. Acute particulate hexavalent chromium exposure induces DNA double-strand breaks and activates homologous recombination repair in rat lung tissue. Toxicol Sci 2024; 201:1-13. [PMID: 38867691 PMCID: PMC11347773 DOI: 10.1093/toxsci/kfae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Hexavalent chromium [Cr(VI)] is an established human lung carcinogen, but the carcinogenesis mechanism is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driver of Cr(VI)-induced lung cancer. Unrepaired DNA double-strand breaks are the underlying cause, and homologous recombination repair is the primary mechanism preventing Cr(VI)-induced DNA breaks from causing chromosome instability. Cell culture studies show acute Cr(VI) exposure causes DNA double-strand breaks and increases homologous recombination repair activity. However, the ability of Cr(VI)-induced DNA breaks and repair impact has only been reported in cell culture studies. Therefore, we investigated whether acute Cr(VI) exposure could induce breaks and homologous recombination repair in rat lungs. Male and female Wistar rats were acutely exposed to either zinc chromate particles in a saline solution or saline alone by oropharyngeal aspiration. This exposure route resulted in increased Cr levels in each lobe of the lung. We found Cr(VI) induced DNA double-strand breaks in a concentration-dependent manner, with females being more susceptible than males, and induced homologous recombination repair at similar levels in both sexes. Thus, these data show this driving mechanism discovered in cell culture indeed translates to lung tissue in vivo.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Aggie Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - John Pierce Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Pediatric Research Institute, University of Louisville, Louisville, KY 40292, United States
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Jamie Young Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| | - Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, United States
| | - Cairong Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610044, China
| | - Abdul-Mehdi Ali
- Earth and Planetary Sciences Department, The University of New Mexico, Albuquerque, NM 87131, United States
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
3
|
Lu H, Toyoda JH, Wise SS, Browning CL, Speer RM, Croom-Pérez TJ, Bolt A, Meaza I, Wise JP. A whale of a tale: whale cells evade the driving mechanism for hexavalent chromium-induced chromosome instability. Toxicol Sci 2024; 199:49-62. [PMID: 38539048 PMCID: PMC11057468 DOI: 10.1093/toxsci/kfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Chromosome instability, a hallmark of lung cancer, is a driving mechanism for hexavalent chromium [Cr(VI)] carcinogenesis in humans. Cr(VI) induces structural and numerical chromosome instability in human lung cells by inducing DNA double-strand breaks and inhibiting homologous recombination repair and causing spindle assembly checkpoint (SAC) bypass and centrosome amplification. Great whales are long-lived species with long-term exposures to Cr(VI) and accumulate Cr in their tissue, but exhibit a low incidence of cancer. Data show Cr(VI) induces fewer chromosome aberrations in whale cells after acute Cr(VI) exposure suggesting whale cells can evade Cr(VI)-induced chromosome instability. However, it is unknown if whales can evade Cr(VI)-induced chromosome instability. Thus, we tested the hypothesis that whale cells resist Cr(VI)-induced loss of homologous recombination repair activity and increased SAC bypass and centrosome amplification. We found Cr(VI) induces similar amounts of DNA double-strand breaks after acute (24 h) and prolonged (120 h) exposures in whale lung cells, but does not inhibit homologous recombination repair, SAC bypass, or centrosome amplification, and does not induce chromosome instability. These data indicate whale lung cells resist Cr(VI)-induced chromosome instability, the major driver for Cr(VI) carcinogenesis at a cellular level, consistent with observations that whales are resistant to cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Cynthia L Browning
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Tayler J Croom-Pérez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
4
|
Meaza I, Williams AR, Lu H, Kouokam JC, Toyoda JH, Croom-Perez TJ, Wise SS, Aboueissa AEM, Wise JP. Prolonged particulate hexavalent chromium exposure induces RAD51 foci inhibition and cytoplasmic accumulation in immortalized and primary human lung bronchial epithelial cells. Toxicol Appl Pharmacol 2023; 479:116711. [PMID: 37805091 PMCID: PMC10841504 DOI: 10.1016/j.taap.2023.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4μg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL 32827, United States of America
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | | | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America.
| |
Collapse
|
5
|
Maeda J, Haskins JS, Kato TA. XRCC8 mutation causes hypersensitivity to PARP inhibition without Homologous recombination repair deficiency. Mutat Res 2023; 826:111815. [PMID: 36812659 DOI: 10.1016/j.mrfmmm.2023.111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
PARP inhibitors inflict severe toxicity to homologous recombination (HR) repair deficient cells because DNA damages induced by PARP inhibition result in lethal DNA double strand breaks in the absence of HR repair during DNA replication. PARP inhibitors are the first clinically approved drugs designed for synthetic lethality. The synthetic lethal interaction of PARP inhibitors is not limited to HR repair deficient cells. We investigated radiosensitive mutants isolated from Chinese hamster lung origin V79 cells to identify novel synthetic lethal targets in the context of PARP inhibition. HR repair deficient BRCA2 mutant cells were used for positive control. Among tested cells, XRCC8 mutants presented hypersensitivity to PARP inhibitor, Olaparib. XRCC8 mutants showed elevated sensitivity to bleomycin and camptothecin similar to BRCA2 mutants. XRCC8 mutants presented an elevation of γ-H2AX foci formation frequency and S-phase dependent chromosome aberrations with Olaparib treatment. Enumerated damage foci following Olaparib treatment were observed to be elevated in XRCC8 as in BRCA2 mutants. Although this may suggest that XRCC8 plays a role in a similar DNA repair pathway as BRCA2 in HR repair, XRCC8 mutants presented functional HR repair including proper Rad51 foci formation and even elevated sister chromatid exchange frequencies with PARP inhibitor treatment. For comparison, RAD51 foci formation was suppressed in HR repair deficient BRCA2 mutants. Additionally, XRCC8 mutants did not display delayed mitotic entry with PARP inhibitors whereas BRCA2 mutants did. XRCC8 mutant cell line has previously been reported as possessing a mutation in the ATM gene. XRCC8 mutants displayed maximum cytotoxicity to ATM inhibitor among tested mutants and wild type cells. Furthermore, the ATM inhibitor sensitized XRCC8 mutant to ionzing radiation, however, XRCC8 mutant V-G8 expressed reduced levels of ATM protein. The gene responsible for XRCC8 phenotype may not be ATM but highly associated with ATM functions. These results suggest that XRCC8 mutation is a target for PARP inhibitor-induced synthetic lethality in HR repair independent manner via the disruption of cell cycle regulation. Our findings expand the potential application of PARP inhibitors in tumors lacking DNA damage responding genes other than HR repair, and further investigation of XRCC8 may contribute to this research.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeremy S Haskins
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Krawic C, Zhitkovich A. Chemical mechanisms of DNA damage by carcinogenic chromium(VI). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:25-46. [PMID: 36858775 PMCID: PMC10069994 DOI: 10.1016/bs.apha.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hexavalent chromium is a firmly established human carcinogen with documented exposures in many professional groups. Environmental exposure to Cr(VI) is also a significant public health concern. Cr(VI) exists in aqueous solutions as chromate anion that is unreactive with DNA and requires reductive activation inside the cells to produce genotoxic and mutagenic effects. Reduction of Cr(VI) in cells is nonenzymatic and in vivo principally driven by ascorbate with a secondary contribution from nonprotein thiols glutathione and cysteine. In addition to its much faster rate of reduction, ascorbate-driven metabolism avoids the formation of Cr(V) which is the first intermediate in Cr(VI) reduction by thiols. The end-product of Cr(VI) reduction is Cr(III) which forms several types of Cr-DNA adducts that are collectively responsible for all mutagenic and genotoxic effects in Cr(VI) reactions with ascorbate and thiols. Some Cr(V) forms can react with H2O2 to produce DNA-oxidizing peroxo species although this genotoxic pathway is suppressed in cells with physiological levels of ascorbate. Chemical reactions of Cr(VI) with ascorbate or thiols lack directly DNA-oxidizing metabolites. The formation of oxidative DNA breaks in early studies of these reactions was caused by iron contamination. Production of Cr(III)-DNA adducts in cells showed linear dose-dependence irrespective of the predominant reduction pathway and their processing by mismatch repair generated more toxic secondary genetic lesions in euchromatin. Overall, Cr(III)-DNA adduction is the dominant pathway for the formation of genotoxic and mutagenic DNA damage by carcinogenic Cr(VI).
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States.
| |
Collapse
|
7
|
In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside. Biomedicines 2021; 10:biomedicines10010041. [PMID: 35052721 PMCID: PMC8773213 DOI: 10.3390/biomedicines10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
We recently screened a series of new aziridines β-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-β-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.
Collapse
|
8
|
Speer RM, Toyoda JH, Croom-Perez TJ, Liu KJ, Wise JP. Particulate Hexavalent Chromium Inhibits E2F1 Leading to Reduced RAD51 Nuclear Foci Formation in Human Lung Cells. Toxicol Sci 2021; 181:35-46. [PMID: 33677506 DOI: 10.1093/toxsci/kfab019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer death; however, the mechanisms of lung carcinogens are poorly understood. Metals, including hexavalent chromium [Cr(VI)], induce chromosome instability, an early event in lung cancer. Failure of homologous recombination repair is a key mechanism for chromosome instability. Particulate Cr(VI) causes DNA double-strand breaks and prolonged exposure impairs homologous recombination targeting a key effector protein in this pathway, RAD51. Reduced RAD51 protein is a key endpoint of particulate Cr(VI) exposure. It is currently unknown how Cr(VI) reduces RAD51 protein. E2F1 is the predominant transcription factor for RAD51. This study sought to identify if E2F1 modulates the RAD51 response to particulate Cr(VI). Particulate Cr(VI) reduced RAD51 protein and mRNA levels but had a minimal effect on RAD51 half-life. E2F1 protein and mRNA were also inhibited by particulate Cr(VI) exposure. To connect these two outcomes, we tested if modulating E2F1 affects RAD51 outcomes after particulate Cr(VI) exposure. E2F1 knockdown inhibited RAD51 nuclear foci formation after acute particulate Cr(VI) exposure. These data indicate reduced RAD51 protein levels after prolonged particulate Cr(VI) exposure are predominantly due to inhibited expression. Particulate Cr(VI) also inhibits E2F1 expression. However, although loss of E2F1 does not modulate RAD51 expression after particulate Cr(VI) exposure, RAD51 nuclear foci formation is inhibited. These findings suggest E2F1 is important for RAD51 localization to double-strand breaks, but not expression after particulate Cr(VI) exposure in human lung cells.
Collapse
Affiliation(s)
- Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
9
|
Reyes-Rodríguez MDLÁ, Santos-Cruz LF, García-Castro C, Durán-Díaz Á, Castañeda-Partida L, Dueñas-García IE, Heres-Pulido ME, Rodríguez-Mercado JJ. Genotoxicity and cytotoxicity evaluation of two thallium compounds using the Drosophila wing somatic mutation and recombination test. Heliyon 2021; 7:e07087. [PMID: 34136682 PMCID: PMC8176319 DOI: 10.1016/j.heliyon.2021.e07087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Thallium (Tl) is a heavy and toxic metal and a byproduct of several human activities, such as cement production, mining, and coal combustion. Thallium is found in fruits, vegetables, and animal fodder with high Tl contamination; therefore, it is an environmental pollution issue and a toxicological contamination problem for human beings and other organisms when exposed to it. The mutagenic potential of Tl and its compounds is controversial, and there are few in vivo studies on its effects. We conducted the animal bioassay Drosophila wing somatic mutation and recombination test (SMART) to test for genotoxicity and assessed the genotoxic effects of Tl acetate (TlCH3COO) and Tl sulfate (Tl2SO4) on Drosophila melanogaster. Third instar larvae from the SMART standard cross (ST) were fed Tl acetate [0.2, 2, 20, 200, 600 and 1200 μM] and Tl sulfate [0.2, 2, 20, 200, and 600 μM]. Hexavalent chromium [CrO3, 500 μM] served as the positive control, and Milli-Q water served as the negative control. Only the high Tl2SO4 [600 μM] concentration resulted in genotoxicity with 87.6% somatic recombination, and both salts disrupted cell division of wing imaginal disc cells, showing the expected cytotoxic effects. Genotoxic risks due to high metal levels by bioaccumulation of Tl+1 or its compounds require further evaluation with other in vivo and in vitro assays.
Collapse
Affiliation(s)
- María de los Ángeles Reyes-Rodríguez
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Felipe Santos-Cruz
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Carlos García-Castro
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Ángel Durán-Díaz
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Laura Castañeda-Partida
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Irma Elena Dueñas-García
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - María Eugenia Heres-Pulido
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), FES Zaragoza, Campus II, UNAM, Iztapalapa, C.P. 15000, CdMx, Mexico
- Corresponding author.
| |
Collapse
|
10
|
Kojima Y, Machida YJ. DNA-protein crosslinks from environmental exposure: Mechanisms of formation and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:716-729. [PMID: 32329115 PMCID: PMC7575214 DOI: 10.1002/em.22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Many environmental carcinogens cause DNA damage, which can result in mutations and other alterations in genomic DNA if not repaired promptly. Because of the bulkiness of the lesions, DNA-protein crosslinks (DPCs) are one of the types of toxic DNA damage with potentially deleterious consequences. Despite the importance of DPCs, how cells remove these complex DNA adducts has been incompletely understood. However, major progress in the DPC repair field over the past 5 years now supports the view that cells are equipped with multiple mechanisms to cope with DPCs. Here, we first provide an overview of environmental substances that induce DPCs, describing the sources of exposure and mechanisms of DPC formation. We then review current models of DPC repair and discuss their significance for environmental carcinogens.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Yuichi J. Machida
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Correspondence to Yuichi J. Machida.
| |
Collapse
|
11
|
Burgos-Morón E, Pastor N, Orta ML, Jiménez-Alonso JJ, Vega-Holm M, Vega-Pérez JM, Iglesias-Guerra F, Mateos S, López-Lázaro M, Calderón-Montaño JM. Selective cytotoxic activity and DNA damage by an epoxyalkyl galactopyranoside. Drug Dev Res 2018; 79:426-436. [DOI: 10.1002/ddr.21483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Nuria Pastor
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | - Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | | | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - Santiago Mateos
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy; University of Seville; Seville Spain
| | | |
Collapse
|
12
|
Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 2018; 14:e1007595. [PMID: 30148840 PMCID: PMC6128646 DOI: 10.1371/journal.pgen.1007595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/07/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3’ end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3’-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks. Hexavalent chromium is a carcinogen that is found at toxic waste sites and in some groundwater supplies. Cellular metabolism converts chromium into DNA-damaging chromate, but it is unclear which types of chromate-DNA lesions are most dangerous, and which cellular mechanisms most critically prevent chromium toxicity. This study uses whole-genome profiling to identify DNA repair pathways that are crucial for chromate resistance in fission yeast. The resulting ‘toxicogenomic’ profile of chromate closely matches camptothecin, a natural product representing a class of chemotherapeutic drugs that cause replication fork collapse by poisoning Topoisomerase 1 (Top1), which relaxes supercoiled DNA by creating and resealing single-strand breaks (SSBs). Genetic interaction analyses uncover important roles for Tdp1 tyrosyl-DNA phosphodiesterase and Pnk1 polynucleotide 5’-kinase 3’-phosphatase (PNKP), which repair camptothecin-induced SSBs and prevent neurological disease in humans. However, chromium toxicity does not involve Top1. As Tdp1 and Pnk1 repair SSBs with 3’-blocked termini, these data suggest that Top1-independent 3’-blocked SSBs contribute to the carcinogenic and mutagenic properties of chromium.
Collapse
|
13
|
Polymorphisms and mutations in GSTP1, RAD51, XRCC1 and XRCC3 genes in breast cancer patients. Int J Biol Markers 2017; 32:e337-e343. [PMID: 28315507 DOI: 10.5301/ijbm.5000258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Genotoxic factors, including ionizing radiation and oxidative stress, are associated with genomic instability and development of breast cancer (BC). The homologous recombination DNA repair (HRR) pathway, base excision repair (BER) mechanism, and antioxidative enzymes are required as defense mechanisms against these DNA damaging agents. GSTP1, XRCC1, XRCC3 and RAD51 proteins are essential components of antioxidation, BER and HRR of DNA, respectively. Deficiencies in BER, HRR and antioxidation pathways are involved in the progression of cancer. METHODS Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissue and blood samples of BC patients of an Italian population. Genomic DNA was also extracted from blood specimens of a control group. DNA sequencing was performed for six single-nucleotide polymorphisms (SNPs) in the GSTP1, RAD51, XRCC1 and XRCC3 genes in BC patients and the control group. RESULTS Two variants in the 5'-UTR of the XRCC3 (rs1799794 A/G) and RAD51 (rs1801321) genes showed a significant association with susceptibility to BC (OR = 4.125; 95% CI 1.057-16.102; p = 0.03 and OR = 2.04; 95% CI 0.4925-8.449; p = 0.007, respectively). Additionally, we reported 2 mutations in intron 7 of the XRCC3 gene, CTdel (rs543072564) and A/G (rs369703243). CONCLUSIONS Our results underscored the existence of an association between XRCC3-5'-UTR-A/G (rs1799794) and RAD51-5'-UTR G172T (rs1801321) genotypes and BC risk in an Italian population. The presence of mutations in the intronic region of the XRCC3 gene highlights the importance of more sequence screening of DNA repair genes for possible genetic penetrance in BC.
Collapse
|
14
|
Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells. Toxicol Appl Pharmacol 2017; 331:18-23. [PMID: 28411036 DOI: 10.1016/j.taap.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/28/2023]
Abstract
Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis.
Collapse
|
15
|
Tian X, Patel K, Ridpath JR, Chen Y, Zhou YH, Neo D, Clement J, Takata M, Takeda S, Sale J, Wright FA, Swenberg JA, Nakamura J. Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium. PLoS One 2016; 11:e0167503. [PMID: 27907204 PMCID: PMC5132242 DOI: 10.1371/journal.pone.0167503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Contamination of potentially carcinogenic hexavalent chromium (Cr(VI)) in the drinking water is a major public health concern worldwide. However, little information is available regarding the biological effects of a nanomoler amount of Cr(VI). Here, we investigated the genotoxic effects of Cr(VI) at nanomoler levels and their repair pathways. We found that DNA damage response analyzed based on differential toxicity of isogenic cells deficient in various DNA repair proteins is observed after a three-day incubation with K2CrO4 in REV1-deficient DT40 cells at 19.2 μg/L or higher as well as in TK6 cells deficient in polymerase delta subunit 3 (POLD3) at 9.8 μg/L or higher. The genotoxicity of Cr(VI) decreased ~3000 times when the incubation time was reduced from three days to ten minutes. TK mutation rate also significantly decreased from 6 day to 1 day exposure to Cr(VI). The DNA damage response analysis suggest that DNA repair pathways, including the homologous recombination and REV1- and POLD3-mediated error-prone translesion synthesis pathways, are critical for the cells to tolerate to DNA damage caused by trace amount of Cr(VI).
Collapse
Affiliation(s)
- Xu Tian
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keyur Patel
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Ridpath
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Youjun Chen
- Department of Neurology, UNC Neuroscience center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Dayna Neo
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jean Clement
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Julian Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Fred A. Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
- * E-mail: (JN); (FW)
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- * E-mail: (JN); (FW)
| |
Collapse
|
16
|
Browning CL, Qin Q, Kelly DF, Prakash R, Vanoli F, Jasin M, Wise JP. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells. Toxicol Sci 2016; 153:70-8. [PMID: 27449664 DOI: 10.1093/toxsci/kfw103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis.
Collapse
Affiliation(s)
- Cynthia L Browning
- *Wise Laboratory of Environmental and Genetic Toxicology, Portland, Maine 04104 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469
| | - Qin Qin
- *Wise Laboratory of Environmental and Genetic Toxicology, Portland, Maine 04104 Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016
| | - Deborah F Kelly
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016
| | - Rohit Prakash
- Memorial Sloan Kettering Cancer Center, New York 10065, New York
| | - Fabio Vanoli
- Memorial Sloan Kettering Cancer Center, New York 10065, New York
| | - Maria Jasin
- Memorial Sloan Kettering Cancer Center, New York 10065, New York
| | - John Pierce Wise
- *Wise Laboratory of Environmental and Genetic Toxicology, Portland, Maine 04104 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469
| |
Collapse
|
17
|
Chandra S, Khatoon R, Pandey A, Saini S, Vimal D, Singh P, Chowdhuri DK. Dme-miR-314-3p modulation in Cr(VI) exposed Drosophila affects DNA damage repair by targeting mus309. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:360-369. [PMID: 26590872 DOI: 10.1016/j.jhazmat.2015.10.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
microRNAs (miRNAs) as one of the major epigenetic modulators negatively regulate mRNAs at post transcriptional level. It was therefore hypothesized that modulation of miRNAs by hexavalent Chromium [Cr(VI)], a priority environmental chemical, can affect DNA damage. In a genetically tractable model, Drosophila melanogaster, role of maximally up-regulated miRNA, dme-miR-314-3p, on DNA damage was examined by exposing the third instar larvae to 5.0-20.0 μg/ml Cr(VI) for 24 and 48 h. mus309, a Drosophila homologue of human Bloom's syndrome and predicted as one of the potential targets of this miRNA, was confirmed as its target by 5'RLM-RACE assay. A significant down-regulation of mus309 was observed in dme-miR-314-3p overexpression strain (myo-gal4>UAS-miR-314-3p) as compared with that in parental strains (myo-gal4 and UAS-miR-314-3p) and in w(1118). A significant increase in DNA damage including double strand breaks generation was observed in exposed myo-gal4>UAS-miR-314 and mus309 mutants as compared with that in parental strain and in unexposed control. A significant down-regulation of cell cycle regulation genes (CycA, CycB and cdc2) was observed in these exposed genotypes. Collectively, the study demonstrates that dme-miR-314-3p can mediate the downregulation of repair deficient gene mus309 leading to increased DNA damage and cell cycle arrest in exposed organism which may affect Cr(VI) mediated carcinogenesis.
Collapse
Affiliation(s)
- Swati Chandra
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific Innovation & Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Rehana Khatoon
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashutosh Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Divya Vimal
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific Innovation & Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Pallavi Singh
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific Innovation & Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - D Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific Innovation & Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
18
|
Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells. Int J Mol Sci 2015; 16:11892-902. [PMID: 26016500 PMCID: PMC4490421 DOI: 10.3390/ijms160611892] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.
Collapse
|
19
|
Detection of Urinary 8-hydroxydeoxyguanosine (8-OHdG) Levels as a Biomarker of Oxidative DNA Damage among Home Industry Workers Exposed to Chromium. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Chandra S, Pandey A, Chowdhuri DK. MiRNA profiling provides insights on adverse effects of Cr(VI) in the midgut tissues of Drosophila melanogaster. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:558-567. [PMID: 25464296 DOI: 10.1016/j.jhazmat.2014.09.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
Cr(VI), a well-known environmental chemical, is reported to cause various adverse effects on exposed organisms including genomic instability and carcinogenesis. Despite available information on the underlying mechanism of Cr(VI) induced toxicity, studies regarding toxicity modulation by epigenetic mechanisms are limited. It was therefore, hypothesized that the global miRNA profiling in Cr(VI) exposed Drosophila, a genetically tractable model organism, will provide information about mis-regulated miRNAs along with their targeted genes and relevant processes. Third instar larvae of Drosophila melanogaster (Oregon R(+)) were exposed to 5.0-20.0 μg/ml of Cr(VI) for 24 and 48 h. Following miRNA profile analysis on an Agilent platform, 28 of the 36 differentially expressed miRNAs were found to be significantly mis-regulated targeting major biological processes viz., DNA damage repair, oxidation-reduction processes, development and differentiation. Down-regulation of mus309 and mus312 under DNA repair, acon to oxidation-reduction and pyd to stress activated MAPK cascade respectively belonging to these gene ontology classes concurrent with up-regulation of dme-miR-314-3p, dme-miR-79-3p and dme-miR-12-5p confirm their functional involvement against Cr(VI) exposure. These findings assume significance since majority of the target genes in Drosophila have functional homologues in humans. The study further recommends Drosophila as a model to explore the role of miRNAs in xenobiotic induced toxicity.
Collapse
Affiliation(s)
- Swati Chandra
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Ashutosh Pandey
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
21
|
Qin Q, Xie H, Wise SS, Browning CL, Thompson KN, Holmes AL, Wise JP. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells. Toxicol Sci 2014; 142:117-25. [PMID: 25173789 DOI: 10.1093/toxsci/kfu175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI).
Collapse
Affiliation(s)
- Qin Qin
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - Hong Xie
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - Sandra S Wise
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - Cynthia L Browning
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - Kelsey N Thompson
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - Amie L Holmes
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| | - John Pierce Wise
- The Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth Street, Portland, Maine 04104-9300
| |
Collapse
|
22
|
Mishra M, Sharma A, Shukla AK, Pragya P, Murthy RC, de Pomerai D, Dwivedi UN, Chowdhuri DK. Transcriptomic analysis provides insights on hexavalent chromium induced DNA double strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae. Mutat Res 2013; 747-748:28-39. [PMID: 23628323 DOI: 10.1016/j.mrfmmm.2013.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well known mutagen and carcinogen. Since genomic instability due to generation of double strand breaks (DSBs) is causally linked to carcinogenesis, we tested a hypothesis that Cr(VI) causes in vivo generation of DSBs and elicits DNA damage response. We fed repair proficient Drosophila melanogaster (Oregon R(+)) larvae Cr(VI) (20.0μg/ml) mixed food for 24 and 48h and observed a significant (p<0.05) induction of DSBs in their midgut cells after 48h using neutral Comet assay. Global gene expression profiling in Cr(VI)-exposed Oregon R(+) larvae unveiled mis-regulation of DSBs responsive repair genes both after 24 and 48h. In vivo generation of DSBs in exposed Drosophila was confirmed by an increased pH2Av immunostaining along with the activation of cell cycle regulation genes. Analysis of mis-regulated genes grouped under DSB response by GOEAST indicated the participation of non-homologous end joining (NHEJ) DSB repair pathway. We selected two strains, one mutant (ligIV) and another ku80-RNAi (knockdown of ku80), whose functions are essentially linked to NHEJ-DSB repair pathway. As a proof of principle, we compared the DSBs generation in larvae of these two strains with that of repair proficient Oregon R(+). Along with this, DSBs generation in spn-A and okr [essential genes in homologous recombination repair (HR) pathway] mutants was also tested for the possible involvement of HR-DSB repair. A significantly increased DSBs generation in the exposed ku80-RNAi and ligIV (mutant) larvae because of impaired repair, concomitant with an insignificant DSBs generation in okr and spn-A mutant larvae indicates an active participation of NHEJ repair pathway. The study, first of its kind to our knowledge, while providing evidences for in vivo generation of DSBs in Cr(VI) exposed Drosophila larvae, assumes significance for its relevance to higher organisms due to causal link between DSB generation and Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Manish Mishra
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research CSIR-IITR, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Calderón-Montaño JM, Madrona A, Burgos-Morón E, Orta ML, Mateos S, Espartero JL, López-Lázaro M. Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5046-5053. [PMID: 23638972 DOI: 10.1021/jf400796p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent data suggest that hydroxytyrosol, a phenolic compound of virgin olive oils, has anticancer activity. This communication reports the synthesis of decyl and hexadecyl hydroxytyrosyl ethers, as well as the cytotoxic activity of hydroxytyrosol and a series of seven hydroxytyrosol alkyl ether derivatives against A549 lung cancer cells and MRC5 non-malignant lung fibroblasts. Hydroxytyrosyl dodecyl ether (HTDE) showed the highest selective cytotoxicity, and possible mechanisms of action were investigated; results suggest that HTDE can moderately inhibit glycolysis, induce oxidative stress, and cause DNA damage in A549 cells. The combination of HTDE with the anticancer drug 5-fluorouracil induced a synergistic cytotoxicity in A549 cancer cells but not in non-malignant MRC5 cells. HTDE also displayed selective cytotoxicity against MCF7 breast cancer cells versus MCF10 normal breast epithelial cells in the 1-30 μM range. These results suggest that the cytotoxicity of HTDE is more potent and selective than that of parent compound hydroxytyrosol.
Collapse
|
24
|
Calderón-Montaño JM, Burgos-Morón E, Orta ML, Pastor N, Perez-Guerrero C, Austin CA, Mateos S, López-Lázaro M. Guanidine-reactive agent phenylglyoxal induces DNA damage and cancer cell death. Pharmacol Rep 2012; 64:1515-25. [DOI: 10.1016/s1734-1140(12)70949-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/28/2012] [Indexed: 01/03/2023]
|
25
|
Sobol Z, Schiestl RH. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:94-100. [PMID: 22020802 DOI: 10.1002/em.20679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Cr(VI) is a human and animal carcinogen. Cr(VI) does not interact directly with DNA and thus its genotoxicity is attributed to its intracellular reduction to Cr(III) via reactive intermediates. The resulting types of DNA damage can be grouped into two categories: (1) oxidative DNA damage and (2) Cr(III)-DNA interactions. This study examines the molecular mechanism of Cr(VI) and Cr(III) genotoxicity in an intact cell. A system screening for DNA deletions (DEL assay) was used to compare induction of chromosomal rearrangements in the yeast Saccharomyces cerevisiae following Cr(VI) and Cr(III) exposure. Both forms of chromium induced DNA deletions albeit with different dose-response curves. N-acetylcysteine had a protective effect against Cr(VI) genotoxicity at high exposure doses but had no protective effect at lower doses or against Cr(III). An oxidative DNA damage repair mutant was hypersensitive to Cr(VI) only at high exposure and the mutant was not hypersensitive to Cr(III) exposure. These data imply that oxidative stress is involved in Cr(VI) genotoxicity at high exposure concentrations and not so in Cr(III). The Cr(III)-DNA interaction appears to be an important genotoxic lesion following Cr(VI) exposure at low-exposure concentrations. The CAN forward mutation assay revealed that within the concentration ranges used for this study, Cr(III) does not cause point mutations and Cr(VI) causes a mild but statistically significant increase in point mutation only at the highest concentration tested. This study reveals that DNA deletions occurring as a result of intrachromosomal homologous recombination are a useful endpoint for studying chromium genotoxicity.
Collapse
Affiliation(s)
- Zhanna Sobol
- Department of Pathology, Geffen School of Medicine and School of Public Health, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
26
|
Reynolds M, Armknecht S, Johnston T, Zhitkovich A. Undetectable role of oxidative DNA damage in cell cycle, cytotoxic and clastogenic effects of Cr(VI) in human lung cells with restored ascorbate levels. Mutagenesis 2012; 27:437-43. [PMID: 22241526 DOI: 10.1093/mutage/ger095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cultured human cells are invaluable biological models for mechanistic studies of genotoxic chemicals and drugs. Continuing replacement of animals in toxicity testing will further increase the importance of in vitro cell systems, which should accurately reproduce key in vivo characteristics of toxicants such as their profiles of metabolites and DNA lesions. In this work, we examined how a common severe deficiency of cultured cells in ascorbate (Asc) impacts the formation of oxidative DNA damage by hexavalent chromium (chromate). Cr(VI) is reductively activated inside the cells by both Asc and small thiols but with different rates and spectra of intermediates and DNA adducts. We found that Cr(VI) exposure of H460 human lung epithelial cells in standard culture (<0.01 mM cellular Asc) induced biologically significant amounts of oxidative DNA damage. Inhibition of oxidative damage repair in these cells by stable XRCC1 knockdown strongly enhanced cytotoxic effects of Cr(VI) and led to depletion of cells from G(1) and accumulation in S and G(2) phases. However, restoration of physiological levels of Asc (≈ 1 mM) completely eliminated Cr(VI) hypersensitivity of XRCC1 knockdown. The induction of chromosomal breaks assayed by the micronucleus test in Asc-restored H460, primary human lung fibroblasts, and CHO cells was also unaffected by the XRCC1 status. Centromere-negative (clastogenic) micronuclei accounted for 80-90% of all Cr(VI)-induced micronuclei. Consistent with the micronuclei results, Asc-restored cells also showed no increase in the levels of poly(ADP-ribose), which is a biochemical marker of single-stranded breaks. Asc had no effect on cytotoxicity of O(6)-methylguanine, a lesion produced by direct DNA alkylation. Overall, our results indicate that the presence of physiological levels of Asc strongly suppresses pro-oxidant pathways in Cr(VI) metabolism and that the use of standard cell cultures creates a distorted profile of its genotoxic properties.
Collapse
Affiliation(s)
- Mindy Reynolds
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
27
|
Bryant HE. DNA double-strand break damage and repair assessed by pulsed-field gel electrophoresis. Methods Mol Biol 2012; 920:315-321. [PMID: 22941613 DOI: 10.1007/978-1-61779-998-3_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pulsed-field gel electrophoresis (PFGE) is a technique for resolving large (up to 10 Mb) DNA molecules. Using multiple pairs of electrodes DNA is subject to an alternating electric field through a solid agarose matrix. As the current changes direction the reorientation time of DNA is proportional to molecular weight; thus fragments are separated in the gel based on their size. Here we describe the use of PFGE to analyze DNA double-strand break formation and repair in human chromosomal DNA.
Collapse
Affiliation(s)
- Helen E Bryant
- Department of Oncology, The Institute for Cancer Studies,University of Sheffield, Sheffield, UK.
| |
Collapse
|
28
|
Jones NR, Spratt TE, Berg AS, Muscat JE, Lazarus P, Gallagher CJ. Association studies of excision repair cross-complementation group 1 (ERCC1) haplotypes with lung and head and neck cancer risk in a Caucasian population. Cancer Epidemiol 2010; 35:175-81. [PMID: 20863778 DOI: 10.1016/j.canep.2010.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND The formation of bulky DNA adducts caused by diol epoxide derivatives of polycyclic aromatic hydrocarbons has been associated with tobacco-induced cancers, and inefficient repair of such adducts by the nucleotide excision repair (NER) system has been linked to increased risk of tobacco-induced lung and head and neck (H&N) cancers. The human excision repair cross-complementation group 1 (ERCC1) protein is essential for a functional NER system and genetic variation in ERCC1 may contribute to impaired DNA repair capacity and increased lung and H&N cancer risk. METHODS In order to comprehensively capture common genetic variation in the ERCC1 gene, Caucasian data from the International HapMap project was used to assess linkage disequilibrium and choose four tagSNPs (rs1319052, rs3212955, rs3212948, and rs735482) in the ERCC1 gene to genotype 452 lung cancer cases, 175 H&N cancer cases, and 790 healthy controls. Haplotypes were estimated using expectation maximization (EM) algorithm, and haplotype association with cancer was investigated using Haplo.stats software adjusting for known covariates. RESULTS The genotype and haplotype frequencies matched previous estimates from Caucasians. There was no significant difference in the prevalence of rs1319052, rs3212955, rs3212948, and rs735482 when comparing lung or H&N cancer cases with controls (p-values>0.05). Similarly, there was no association between ERCC1 haplotypes and lung or H&N cancer susceptibility in this Caucasian population (p-values>0.05). No associations were found when stratifying lung cancer cases by histology, sex, smoking status, or smoking intensity. CONCLUSIONS This study suggests that ERCC1 polymorphisms and haplotypes do not play a role in lung and H&N cancer susceptibility in Caucasians.
Collapse
Affiliation(s)
- Nathan R Jones
- Molecular Epidemiology and Cancer Control Programs, Penn State Hershey Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Evaluation of the genetic alterations in direct and indirect exposures of hexavalent chromium [Cr(VI)] in leather tanning industry workers North Arcot District, South India. Int Arch Occup Environ Health 2010; 83:791-801. [DOI: 10.1007/s00420-010-0562-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
30
|
The Werner syndrome protein suppresses telomeric instability caused by chromium (VI) induced DNA replication stress. PLoS One 2010; 5:e11152. [PMID: 20585393 PMCID: PMC2886837 DOI: 10.1371/journal.pone.0011152] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/20/2010] [Indexed: 01/08/2023] Open
Abstract
Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration.
Collapse
|
31
|
Zecevic A, Hagan E, Reynolds M, Poage G, Johnston T, Zhitkovich A. XPA impacts formation but not proteasome-sensitive repair of DNA-protein cross-links induced by chromate. Mutagenesis 2010; 25:381-8. [PMID: 20410141 DOI: 10.1093/mutage/geq017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA-protein cross-links (DPCs) are caused by a large number of human carcinogens and anti-cancer drugs. However, cellular processes involved in decreasing a burden of these genotoxic lesions remain poorly understood. Here, we examined the impact of nucleotide excision repair (NER), which is a principal repair pathway for bulky DNA adducts, and the main cellular reducers on removal of chromium(VI)-induced DPC. We found that standard and ascorbate-restored cultures of isogenic XPA-null (NER deficient) and XPA-complemented human fibroblasts had very similar repair of Cr-DPC (60-65% average DPC removal after 24 h). However, XPA absence caused depletion of G1 and accumulation of G2 cells at low Cr(VI) doses, suggesting that Cr-DPC were not a significant cause of cell cycle perturbations. Interestingly, although pro-oxidant metabolism of Cr(VI) in glutathione-depleted cells generated significantly fewer DPC, they were repair resistant irrespective of the NER status of cells. Inhibition of proteasome activity by MG132 abolished DPC repair in both XPA-null and XPA-complemented cells. XPA loss caused two to three times higher initial DPC formation, demonstrating the importance of NER in removal of the precursor lesions. Our results indicate that human NER is not involved in removal of Cr-DPC containing non-histone proteins but it acts as a defence mechanism against these large lesions by preventing their formation. Therefore, individual differences in NER activity are expected to alter sensitivity but not persistence of DPC as a biomarker of hexavalent Cr.
Collapse
Affiliation(s)
- Alma Zecevic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
32
|
McLachlan J, Fernandez S, Helleday T, Bryant HE. Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination. DNA Repair (Amst) 2009; 8:1424-33. [PMID: 19854687 DOI: 10.1016/j.dnarep.2009.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 09/23/2009] [Accepted: 09/29/2009] [Indexed: 01/29/2023]
Abstract
The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.
Collapse
Affiliation(s)
- Jennifer McLachlan
- The Institute for Cancer Studies, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | |
Collapse
|
33
|
Zecevic A, Menard H, Gurel V, Hagan E, DeCaro R, Zhitkovich A. WRN helicase promotes repair of DNA double-strand breaks caused by aberrant mismatch repair of chromium-DNA adducts. Cell Cycle 2009; 8:2769-78. [PMID: 19652551 DOI: 10.4161/cc.8.17.9410] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies in yeast have found that processing of DNA double-strand breaks (DSB) for recombination repair involves Sgs1 helicase. Human cells have five Sgs1 homologues with unknown selectivity and significance for repair of different DSB types. Here we examined the importance of WRN helicase in repair of G(2)-specific DSB caused by abnormal mismatch repair (MMR) of ternary Cr-DNA adducts. We found that Cr(VI) induced a rapid dispersal of WRN from the nucleolus resulting in its prolonged retention in the nucleoplasm. The loss of MSH2 or MLH1 MMR proteins abolished the long-term but not the initial WRN relocalization. WRN-deficient fibroblasts were hypersensitive to Cr(VI)-induced clonogenic death and contained high levels of persistent DSB detected by gamma-H2AX/53BP1 foci and pulsed-field gel electrophoresis. WRN was involved in recombination repair of Cr-induced DNA damage, as evidenced by WRN-RAD51 colocalization and defective formation of RAD51 foci in the absence of WRN. The accumulation of unrepaired DSB in WRN-depleted cells was rescued by the inactivation of MMR, indicating that MMR-generated DSB were a key substrate for WRN action in Cr(VI)-treated cells. Competition for the limited amounts of WRN in primary cells between G(2) processes of telomere rebuilding and recombinational repair is expected to increase persistence of Cr-induced DSB and may cause telomeric abnormalities in tissues of chronically chromate-exposed workers. Our work provides the first demonstration of the major importance of WRN in repair of a specific class of DSB in human cells.
Collapse
Affiliation(s)
- Alma Zecevic
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
34
|
Response to chronic exposure to hexavalent chromium in human monocytes. Toxicol In Vitro 2009; 23:647-52. [DOI: 10.1016/j.tiv.2009.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
|
35
|
Tamblyn L, Li E, Sarras H, Srikanth P, Hande MP, McPherson JP. A role for Mus81 in the repair of chromium-induced DNA damage. Mutat Res 2008; 660:57-65. [PMID: 19026666 DOI: 10.1016/j.mrfmmm.2008.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 01/11/2023]
Abstract
Hexavalent chromium (Cr[VI]) is a toxic environmental contaminant that is capable of producing a broad spectrum of DNA damage. The ability of Cr[VI] to induce mutagenesis and neoplastic transformation has been attributed to its genotoxic action, however our understanding of molecular mechanisms involved in the repair of Cr[VI]-induced DNA damage remains incomplete. Here, we report that Mus81, an enzyme that participates with Eme1 in the resolution of replication fork damage caused by certain lesions, is involved in the repair of Cr[VI]-induced DNA damage. Mus81-deficient cells were found to be more susceptible to Cr[VI]-induced proliferation arrest and more sensitive to the long-term cytotoxic effects of Cr[VI] than isogenic wild-type cells. Following Cr[VI] exposure, Mus81-deficient cells displayed a lag in the disappearance of Rad51 foci, exhibited elevated replication-associated gamma-H2AX and showed an increased incidence of chromosomal instability compared to wild-type cells. Our findings support a role for Mus81 in the resolution of replication-associated DNA damage associated with this genotoxic agent, by converting Cr[VI]-DNA lesions into a form more amenable for homologous recombination.
Collapse
Affiliation(s)
- Laura Tamblyn
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
36
|
Siddique HR, Sharma A, Gupta SC, Murthy RC, Dhawan A, Saxena DK, Chowdhuri DK. DNA damage induced by industrial solid waste leachates in Drosophila melanogaster: a mechanistic approach. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:206-216. [PMID: 18240159 DOI: 10.1002/em.20373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genomic stability requires that error-free genetic information be transmitted from generation to generation, a process that is dependent upon efficient DNA repair. Industrial leachates which contain mixtures of diverse chemicals are a major environmental concern. The interaction between these chemicals may have synergistic, antagonistic, or simply additive effects on biological systems. In the present study, the Comet assay was used to measure the DNA damage produced by leachates of solid wastes from flashlight battery, pigment, and tanning factories in the midgut cells and brain ganglia of Drosophila melanogaster mutants deficient in DNA repair proteins. Larvae were allowed to feed for 48 or 72 hr on diets containing 0.1, 0.5, and 2.0% (v/v) of the leachates. Physicochemical analysis run on the solid wastes, leachates, and treated larvae detected elevated levels of heavy metals. Leachates produced significantly greater levels of DNA damage in mutant strains mei41 (deficient in cell cycle check point protein), mus201 (deficient in excision repair protein), mus308 (deficient in postreplication repair protein), and rad54 (deficient in double strand break repair protein) than in the OregonR(+) wild-type strain. Larvae of the ligaseIV mutant (deficient in double strand break repair protein) were hypersensitive only to the pigment plant waste leachate. Conversely, the dnase2 mutant (deficient in protein responsible for degrading fragmented DNA) was more sensitive to DNA damage induction from the flashlight battery and tannery waste leachates. Our data demonstrate that repair of DNA damage in organisms exposed to leachates is dependent upon several DNA repair proteins, indicative of the involvement of multiple overlapping repair pathways. The study further suggests the usefulness of the Comet assay for studying the mechanisms of DNA repair in Drosophila.
Collapse
Affiliation(s)
- Hifzur R Siddique
- Embryotoxicology Section, Industrial Toxicology Research Centre, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
DNA repair pathways can enable tumour cells to survive DNA damage that is induced by chemotherapeutic treatments; therefore, inhibitors of specific DNA repair pathways might prove efficacious when used in combination with DNA-damaging chemotherapeutic drugs. In addition, alterations in DNA repair pathways that arise during tumour development can make some cancer cells reliant on a reduced set of DNA repair pathways for survival. There is evidence that drugs that inhibit one of these pathways in such tumours could prove useful as single-agent therapies, with the potential advantage that this approach could be selective for tumour cells and have fewer side effects.
Collapse
Affiliation(s)
- Thomas Helleday
- Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | | | | | | | | |
Collapse
|
38
|
Santoyo G, Strathern JN. Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 2008; 163:113-9. [DOI: 10.1016/j.micres.2007.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 08/14/2007] [Accepted: 09/01/2007] [Indexed: 11/30/2022]
|
39
|
Wise SS, Holmes AL, Wise JP. Hexavalent chromium-induced DNA damage and repair mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2008; 23:39-57. [PMID: 18557597 DOI: 10.1515/reveh.2008.23.1.39] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hexavalent chromium is a commonly used industrial metal that has been shown to induce lung cancer in workers having long term exposure. In the particulate form, Cr(VI) dissolves slowly in vivo, leading to an extended exposure of lung cells. Hexavalent chromium is taken into the cell and rapidly reduced to Cr(V), Cr(IV), Cr(III), and reactive oxygen species. Cells treated with Cr(VI) are subject to several types of DNA damage resulting from this reduction, including base modification, single-strand breaks, double-strand breaks, Cr-DNA adducts, DNA-Cr-DNA adducts, and protein-Cr-DNA adducts. These types of damage, if left unrepaired or are misrepaired, can lead to growth arrest, cytotoxicity, and apoptosis, as well as mutations leading to neoplastic transformation and ultimately tumorigenesis. Here we review the current literature on Cr-induced DNA damage and its repair.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, Maine 04104-9300, USA
| | | | | |
Collapse
|
40
|
Stackpole MM, Wise SS, Duzevik EG, Munroe RC, Thompson WD, Thacker J, Thompson LH, Hinz JM, Wise JP. Homologous recombination repair protects against particulate chromate-induced chromosome instability in Chinese hamster cells. Mutat Res 2007; 625:145-54. [PMID: 17662313 PMCID: PMC2230547 DOI: 10.1016/j.mrfmmm.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/01/2007] [Accepted: 06/13/2007] [Indexed: 12/26/2022]
Abstract
Particulate hexavalent chromium [Cr(VI)] compounds are well-established human carcinogens. Cr(VI)-induced tumors are characterized by chromosomal instability (CIN); however, the mechanisms of this effect are unknown. We investigated the hypothesis that homologous recombination (HR) repair of DNA double-strand breaks protect cells from Cr(VI)-induced CIN by focusing on the XRCC3 and RAD51C genes, which play an important role in cellular resistance to DNA double-strand breaks. We used Chinese hamster cells defective in each HR gene (irs3 for RAD51C and irs1SF for XRCC3) and compared with their wildtype parental and cDNA-complemented controls. We found that the intracellular Cr ion levels varied among the cell lines after particulate chromate treatment. Importantly, accounting for differences in Cr ion levels, we discovered that XRCC3 and RAD51C cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, relative to wildtype and cDNA-complimented cells. We also observed the emergence of high levels of chromatid exchanges in the two mutant cell lines. For example, 1microg/cm(2) lead chromate induced 20 and 32 exchanges in XRCC3- and RAD51C-deficient cells, respectively, whereas no exchanges were detected in the wildtype and cDNA-complemented cells. These observations suggest that HR protects cells from Cr(VI)-induced CIN, consistent with the ability of particulate Cr(VI) to induce double-strand breaks.
Collapse
Affiliation(s)
- Megan M. Stackpole
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Sandra S. Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Eliza Grlickova Duzevik
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Ray C. Munroe
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - W. Douglas Thompson
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, USA
| | - John Thacker
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire OX11 0RD England
| | - Larry H. Thompson
- Lawrence Livermore National Laboratory, Chemistry, Materials, and Life Sciences Directorate, L452, P.O. Box 808, Livermore, CA 94551-0808
| | - John M. Hinz
- Lawrence Livermore National Laboratory, Chemistry, Materials, and Life Sciences Directorate, L452, P.O. Box 808, Livermore, CA 94551-0808
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, USA
- * Corresponding author. Tel.: 207-228-8050; fax: 207-228-8057 E-mail address:
| |
Collapse
|