1
|
Marín M, Fernández-Calero T, Ehrlich R. Protein folding and tRNA biology. Biophys Rev 2017; 9:573-588. [PMID: 28944442 PMCID: PMC5662057 DOI: 10.1007/s12551-017-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Polypeptides can fold into tertiary structures while they are synthesized by the ribosome. In addition to the amino acid sequence, protein folding is determined by several factors within the cell. Among others, the folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins, ligands, or the ribosome, as well as by the translocation through membrane pores. Particularly, the translation machinery and the population of tRNA under different physiological or adaptive responses can dramatically affect protein folding. This review summarizes the scientific evidence describing the role of translation kinetics and tRNA populations on protein folding and addresses current efforts to better understand tRNA biology. It is organized into three main parts, which are focused on: (i) protein folding in the cellular context; (ii) tRNA biology and the complexity of the tRNA population; and (iii) available methods and technical challenges in the characterization of tRNA pools. In this manner, this work illustrates the ways by which functional properties of proteins may be modulated by cellular tRNA populations.
Collapse
Affiliation(s)
- Mónica Marín
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
2
|
Latorre E, Harries LW. Splicing regulatory factors, ageing and age-related disease. Ageing Res Rev 2017; 36:165-170. [PMID: 28456680 DOI: 10.1016/j.arr.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a co-transcriptional process, which allows for the production of multiple transcripts from a single gene and is emerging as an important control point for gene expression. Alternatively expressed isoforms often have antagonistic function and differential temporal or spatial expression patterns, yielding enormous plasticity and adaptability to cells and increasing their ability to respond to environmental challenge. The regulation of alternative splicing is critical for numerous cellular functions in both pathological and physiological conditions, and deregulated alternative splicing is a key feature of common chronic diseases. Isoform choice is controlled by a battery of splicing regulatory proteins, which include the serine arginine rich (SRSF) proteins and the heterogeneous ribonucleoprotein (hnRNP) classes of genes. These important splicing regulators have been implicated in age-related disease, and in the ageing process itself. This review will outline the important contribution of splicing regulator proteins to ageing and age-related disease.
Collapse
|
3
|
Bhagavatula G, Rich MS, Young DL, Marin M, Fields S. A Massively Parallel Fluorescence Assay to Characterize the Effects of Synonymous Mutations on TP53 Expression. Mol Cancer Res 2017; 15:1301-1307. [PMID: 28652265 DOI: 10.1158/1541-7786.mcr-17-0245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Although synonymous mutations can affect gene expression, they have generally not been considered in genomic studies that focus on mutations that increase the risk of cancer. However, mounting evidence implicates some synonymous mutations as driver mutations in cancer. Here, a massively parallel assay, based on cell sorting of a reporter containing a segment of p53 fused to GFP, was used to measure the effects of nearly all synonymous mutations in exon 6 of TP53 In this reporter context, several mutations within the exon caused strong expression changes including mutations that may cause potential gain or loss of function. Further analysis indicates that these effects are largely attributed to errors in splicing, including exon skipping, intron inclusion, and exon truncation, resulting from mutations both at exon-intron junctions and within the body of the exon. These mutations are found at extremely low frequencies in healthy populations and are enriched a few-fold in cancer genomes, suggesting that some of them may be driver mutations in TP53 This assay provides a general framework to identify previously unknown detrimental synonymous mutations in cancer genes.Implications: Using a massively parallel assay, this study demonstrates that synonymous mutations in the TP53 gene affect protein expression, largely through their impact on splicing.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/15/10/1301/F1.large.jpg Mol Cancer Res; 15(10); 1301-7. ©2017 AACR.
Collapse
Affiliation(s)
- Geetha Bhagavatula
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Matthew S Rich
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - David L Young
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Maximillian Marin
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington. .,Howard Hughes Medical Institute, University of Washington, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Abstract
High-throughput sequencing of cancer genomes is increasingly becoming an essential tool of clinical oncology that facilitates target identification and targeted therapy within the context of precision medicine. The cumulative profiles of somatic mutations in cancer yielded by comprehensive molecular studies also constitute a fingerprint of historical exposures to exogenous and endogenous mutagens, providing insight into cancer evolution and etiology. Mutational signatures that were first established by inspection of the TP53 gene somatic landscape have now been confirmed and expanded by comprehensive sequencing studies. Further, the degree of granularity achieved by deep sequencing allows detection of low-abundance mutations with clinical relevance. In tumors, they represent the emergence of small aggressive clones; in normal tissues, they signal a mutagenic exposure related to cancer risk; and, in blood, they may soon become effective surveillance tools for diagnostic purposes and for monitoring of cancer prognosis and recurrence.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jin Jen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
5
|
Whisper mutations: cryptic messages within the genetic code. Oncogene 2015; 35:3753-9. [PMID: 26657150 DOI: 10.1038/onc.2015.454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Recent years have seen a great expansion in our understandings of how silent mutations can drive a disease and that mRNAs are not only mere messengers between the genome and the encoded proteins but also encompass regulatory activities. This review focuses on how silent mutations within open reading frames can affect the functional properties of the encoded protein. We describe how mRNAs exert control of cell biological processes governed by the encoded proteins via translation kinetics, protein folding, mRNA stability, spatio-temporal protein expression and by direct interactions with cellular factors. These examples illustrate how additional levels of information lie within the coding sequences and that the degenerative genetic code is not redundant and have co-evolved with the encoded proteins. Hence, so called synonymous mutations are not always silent but 'whisper'.
Collapse
|
6
|
Nikoshkov A, Broliden K, Attarha S, Sviatoha V, Hellström AC, Mints M, Andersson S. Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues. Int J Oncol 2014; 46:107-12. [PMID: 25339198 DOI: 10.3892/ijo.2014.2724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/28/2014] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most prevalent malignancy among women worldwide, and additional objective diagnostic markers for this disease are needed. Given the link between cancer development and alternative splicing, we aimed to analyze the splicing patterns of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes, which are associated with different cancers, in normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors, to identify new objective diagnostic markers. Biopsies of normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors, were subjected to rapid amplification of cDNA 3' ends (3' RACE) RT‑PCR. Resulting PCR products were analyzed on agarose gels, gel‑purified and sequenced. Normal cervical tissue, preinvasive cervical lesions and invasive cervical tumors contained one PCR product corresponding to full‑length PRDX2, RAB5A and RAB25 transcripts. All tissues contained two RAB1A‑specific PCR products corresponding to the full‑length transcript and one new alternatively spliced RAB1A transcript. Invasive cervical tumors contained one PCR product corresponding to the full‑length RAB1B transcript, while all normal cervical tissue and preinvasive cervical lesions contained both the full‑length RAB1B transcript and three new alternatively spliced RAB1B transcripts. Alternative splicing of the RAB1A transcript occurs in all cervical tissues, while alternative splicing of the RAB1B transcript occurs in normal cervical tissue and in preinvasive cervical lesions; not in invasive cervical tumors.
Collapse
Affiliation(s)
- Andrej Nikoshkov
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sanaz Attarha
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Vitali Sviatoha
- Department of Oncology‑Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Ann-Cathrin Hellström
- Department of Gynecological Oncology, Radiumhemmet, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Miriam Mints
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Sonia Andersson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
7
|
Fernández-Calero T, Astrada S, Alberti A, Horjales S, Arnal JF, Rovira C, Bollati-Fogolín M, Flouriot G, Marin M. The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation. J Steroid Biochem Mol Biol 2014; 143:99-104. [PMID: 24607813 DOI: 10.1016/j.jsbmb.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Until recently, synonymous mutations (which do not change amino acids) have been much neglected. Some evidence suggests that this kind of mutations could affect mRNA secondary structure or stability, translation kinetics and protein structure. To explore deeper the role of synonymous mutations, we studied their consequence on the functional activity of the estrogen receptor alpha (ERα). The ERα is a ligand-inducible transcription factor that orchestrates pleiotropic cellular effects, at both genomic and non-genomic levels in response to estrogens. In this work we analyzed in transient transfection experiments, the activity of ERα carrying the synonymous mutation Ala87, a polymorphism involving about 5-10% of the population. In comparison to the wild type receptor, our results show that ERαA87 mutation reduces the transactivation efficiency of ERα on an ERE reporter gene while its expression level remains similar. This mutation enhances 4-OHT-induced transactivation of ERα on an AP1 reporter gene. Finally, the mutation affects the subcellular localization of ERα in a cell type specific manner. It enhances the cytoplasmic location of ERα without significant changes in non-genomic effects of E2. The functional alteration of the ERαA87 determined in this work highlights the relevance of synonymous mutations for biomedical and pharmacological points of view.
Collapse
Affiliation(s)
- Tamara Fernández-Calero
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay.
| | - Soledad Astrada
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alvaro Alberti
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Sofía Horjales
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Jean Francois Arnal
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse 3, Toulouse, France
| | - Carlos Rovira
- Department of Oncology and CREATE Health Strategic Centre for Clinical Cancer Research, Lund University, BMC, 221 84 Lund, Sweden
| | | | - Gilles Flouriot
- University of Rennes 1, Institut de Recherche en Santé, Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Mónica Marin
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
8
|
Kolesárová V, Šiviková K, Holečková B, Dianovský J. A comparative FISH mapping of LCA5L gene in cattle, sheep, and goats. Anim Biotechnol 2014; 26:37-9. [PMID: 25153453 DOI: 10.1080/10495398.2013.877917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, chromosomal position and nucleotide sequencing of the LCA5L exons were analyzed in cattle, sheep, and goats. Using fluorescence in situ hybridization, the LCA5L gene was localized at the distal region of BTA1q44 in cattle, OAR1q43 in sheep, and CHI1q44 in goats. Sequencing of selected LCA5L exons revealed a high identity of the gene that was in accordance with the previously described high homology of autosomes in Bovidae. Three silent single nucleotide polymorphisms (SNPs) were found: a mismatch at position 1016 (A/G) in bovine exon 4 (rs109149293) and two newly identified mutations at position 1903 (C/T) and 137094787 (C/T) in sheep and goats, respectively.
Collapse
Affiliation(s)
- Viera Kolesárová
- a Institute of Genetics , University of Veterinary Medicine and Pharmacy , Košice , Slovak Republic
| | | | | | | |
Collapse
|
9
|
Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell 2014; 156:1324-1335. [DOI: 10.1016/j.cell.2014.01.051] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 11/20/2013] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
|
10
|
Familial Alzheimer's disease coding mutations reduce Presenilin-1 expression in a novel genomic locus reporter model. Neurobiol Aging 2013; 35:443.e5-443.e16. [PMID: 24011544 DOI: 10.1016/j.neurobiolaging.2013.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
We have generated a physiologically relevant bacterial artificial chromosome (BAC)-based genomic DNA expression model to study PS1 gene expression and function. The PS1-WT-BAC construct restored γ-secretase function, whereas the mutant PS1 BACs demonstrated partial to complete loss of enzymatic activity when stably expressed in a PS double knock-out clonal cell line. We then engineered WT and mutant human PS1-BAC-Luciferase whole genomic locus reporter transgenes, which we transiently transduced in mouse and human non-neuronal and neuronal-like cells, respectively. PS1 ΔE9 and C410Y FAD were found to lower PS1 gene expression in both cell lines, whereas PS1-M146V showed a neuron-specific effect. The nonclinical γ-secretase inactive PS1-D257A mutation did not alter gene expression in either cell line. This is the first time that pathogenic coding mutations in the PS1 gene have been shown to lower PS1 gene expression. These findings may represent a pathologic mechanism for PS1 FAD mutations independent of their effects on γ-secretase activity and demonstrate how dominant PS1 mutations may exert their pathogenic effects by a loss-of-function mechanism.
Collapse
|
11
|
Tang JY, Lee JC, Hou MF, Wang CL, Chen CC, Huang HW, Chang HW. Alternative splicing for diseases, cancers, drugs, and databases. ScientificWorldJournal 2013; 2013:703568. [PMID: 23766705 PMCID: PMC3674688 DOI: 10.1155/2013/703568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/30/2013] [Indexed: 01/05/2023] Open
Abstract
Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including cancers, have been associated with dysregulation of alternative splicing. Thus, correcting alternative splicing may restore normal cell physiology in patients with these diseases. This paper summarizes several alternative splicing-related diseases, including cancers and their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are also summarized.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 300, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Kriangkum J, Warkinton A, Belch AR, Pilarski LM. Alteration of introns in a hyaluronan synthase 1 (HAS1) minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM): MM patients harbor similar changes. PLoS One 2013; 8:e53469. [PMID: 23301075 PMCID: PMC3536762 DOI: 10.1371/journal.pone.0053469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022] Open
Abstract
Aberrant pre-mRNA splice variants of hyaluronan synthase 1 (HAS1) have been identified in malignant cells from cancer patients. Bioinformatic analysis suggests that intronic sequence changes can underlie aberrant splicing. Deletions and mutations were introduced into HAS1 minigene constructs to identify regions that can influence aberrant intronic splicing, comparing the splicing pattern in transfectants with that in multiple myeloma (MM) patients. Introduced genetic variations in introns 3 and 4 of HAS1 as shown here can promote aberrant splicing of the type detected in malignant cells from MM patients. HAS1Vd is a novel intronic splice variant first identified here. HAS1Vb, an intronic splice variant previously identified in patients, skips exon 4 and utilizes the same intron 4 alternative 3′splice site as HAS1Vd. For transfected constructs with unaltered introns 3 and 4, HAS1Vd transcripts are readily detectable, frequently to the exclusion of HAS1Vb. In contrast, in MM patients, HAS1Vb is more frequent than HAS1Vd. In the HAS1 minigene, combining deletion in intron 4 with mutations in intron 3 leads to a shift from HAS1Vd expression to HAS1Vb expression. The upregulation of aberrant splicing, exemplified here by the expression of HAS1Vb, is shown here to be influenced by multiple genetic changes in intronic sequences. For HAS1Vb, this includes enhanced exon 4 skipping and increased usage of alternative 3′ splice sites. Thus, the combination of introduced mutations in HAS1 intron3 with introduced deletions in HAS1 intron 4 promoted a shift to an aberrant splicing pattern previously shown to be clinically significant. Most MM patients harbor genetic variations in intron 4, and as shown here, nearly half harbor recurrent mutations in HAS1 intron 3. Our work suggests that aberrant intronic HAS1 splicing in MM patients may rely on intronic HAS1 deletions and mutations that are frequent in MM patients but absent from healthy donors.
Collapse
Affiliation(s)
- Jitra Kriangkum
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JK); (LMP)
| | - Amanda Warkinton
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R. Belch
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Linda M. Pilarski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (JK); (LMP)
| |
Collapse
|
13
|
Gomes CC, Diniz MG, Orsine LA, Duarte AP, Fonseca-Silva T, Conn BI, De Marco L, Pereira CM, Gomez RS. Assessment of TP53 mutations in benign and malignant salivary gland neoplasms. PLoS One 2012; 7:e41261. [PMID: 22829934 PMCID: PMC3400573 DOI: 10.1371/journal.pone.0041261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 06/25/2012] [Indexed: 11/20/2022] Open
Abstract
Despite advances in the understanding of the pathogenesis of salivary gland neoplasms (SGN), the molecular pathways associated with enhanced tumor growth and cell survival remain to be established. The aim of the present study was to investigate whether TP53 mutations are relevant to SGN pathogenesis and if they impact on p53 protein expression. The study included 18 benign and 18 malignant SGN samples. Two polymorphic microsatellite markers at the TP53 genetic locus were chosen to assess loss of heterozygosity (LOH) in the samples that had matched normal DNA. The TP53 exons 2-11 were amplified by PCR, and all of the products were sequenced. Reverse transcription-PCR of the TP53 open reading frame (ORF) was carried out in the samples that had fresh tissue available, and immunohistochemistry for the p53 protein was performed in all samples. TP53 LOH was only found in two pleomorphic adenomas. We found two missense mutations in exon 7 (one in a pleomorphic adenoma and the other in a polymorphous low grade adenocarcinoma), another in exon 8 (in a carcinoma ex pleomorphic adenoma) and a fourth missense mutation in exon 10 (in a mucoepidermoid carcinoma). In addition, a nonsense mutation was found in exon 8 of an adenoid cystic carcinoma. Several intronic and exonic SNPs were detected. Although almost all of the malignant samples were immunopositive for p53, approximately 37% of the benign samples were positive, including the sample harboring the missense mutation and one of the samples that showed LOH. The complete TP53 ORF could be amplified in all samples analyzed, including the IHC negative samples, the samples showing LOH and one sample displaying a missense mutation. In summary, our results show that TP53 mutations are not a frequent event in SGN and that p53 immunopositivity might not be associated with sequence mutations in SGN.
Collapse
Affiliation(s)
- Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ercan C, van Diest PJ, van der Ende B, Hinrichs J, Bult P, Buerger H, van der Wall E, Derksen PWB. p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast. Cell Oncol (Dordr) 2012; 35:111-8. [PMID: 22354696 PMCID: PMC3306558 DOI: 10.1007/s13402-012-0071-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 01/04/2023] Open
Abstract
Background p53 is a tumor suppressor that is frequently mutated in human cancers. Although alterations in p53 are common in breast cancer, few studies have specifically investigated TP53 mutations in the breast cancer subtype invasive lobular carcinoma (ILC). Recently reported conditional mouse models have indicated that functional p53 inactivation may play a role in ILC development and progression. Since reports on the detection of TP53 mutations in the relatively favorable classic and more aggressive pleomorphic variants of ILC (PILC) are rare and ambiguous, we performed a comprehensive analysis to determine the mutation status of TP53 in these breast cancer subtypes. Methods To increase our understanding of p53-mediated pathways and the roles they may play in the etiology of classic ILC and PILC, we investigated TP53 mutations and p53 accumulation in a cohort of 22 cases of classic and 19 cases of PILC by direct DNA sequencing and immunohistochemistry. Results We observed 11 potentially pathogenic TP53 mutations, of which three were detected in classic ILC (13.6%) and 8 in PILC (42.1%; p = 0.04). While p53 protein accumulation was not significantly different between classic and pleomorphic ILC, mutations that affected structure and protein function were significantly associated with p53 protein levels. Conclusion TP53 mutations occur more frequently in PILC than classic ILC.
Collapse
Affiliation(s)
- Cigdem Ercan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
López I, P Oliveira L, Tucci P, Alvarez-Valín F, A Coudry R, Marín M. Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene 2012; 499:81-7. [PMID: 22373952 DOI: 10.1016/j.gene.2012.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/24/2022]
Abstract
The tumor suppressor TP53 gene is one of the most frequently mutated in different types of human cancer. Particularly in colorectal cancer (CRC), it is believed that TP53 mutations play a role in the adenoma-carcinoma transition of tumors during pathological process. In order to analyze TP53 expressed alleles in CRC, we examined TP53 mRNA in tumor samples from 101 patients with sporadic CRC. Samples were divided in two groups defined according to whether they exhibit positive or negative P53 protein expression as detected by immunohistochemistry (IHC). The presence of TP53 mutation was a common event in tumors with an overall frequency of 54.5%. By direct sequencing, we report 42 different TP53 sequence changes in 55 CRC patients, being two of them validated polymorphisms. TP53 mutations were more frequent in positive than in negative P53 detection group (p<0.0001), being the precise figures 79.6% and 30.8%, respectively. In addition, the mutation profiles were also different between the two groups of samples; while most of the mutations detected in P53 positive group were missense (38 out of 39), changes in P53 negative detection group include 7 insertions/deletions, 6 missense, 2 nonsense and 1 silent mutation. As previously observed, most mutations were concentrated in regions encoding P53 DNA binding domain (DBD). Codons 175, 248 and 273 together account for 36.7% of point mutations, in agreement with previous observations provided that these codons are considered mutation hotspots. Interestingly, we detected two new deletions and two new insertions. In addition, in three samples we detected two deletions and one insertion that could be explained as putative splicing variants or splicing errors.
Collapse
Affiliation(s)
- Ignacio López
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
16
|
Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genomics 2011; 9:556-70. [PMID: 19516963 PMCID: PMC2694562 DOI: 10.2174/138920208786847971] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing is a key molecular mechanism for increasing the functional diversity of the eukaryotic proteomes. A large body of experimental data implicates aberrant splicing in various human diseases, including cancer. Both mutations in cis-acting splicing elements and alterations in the expression and/or activity of splicing regulatory factors drastically affect the splicing profile of many cancer-associated genes. In addition, the splicing profile of several cancer-associated genes is altered in particular types of cancer arguing for a direct role of specific splicing isoforms in tumor progression. Deciphering the mechanisms underlying aberrant splicing in cancer may prove crucial to understand how splicing machinery is controlled and integrated with other cellular processes, in particular transcription and signaling pathways. Moreover, the characterization of splicing deregulation in cancer will lead to a better comprehension of malignant transformation. Cancer-associated alternative splicing variants may be new tools for the diagnosis and classification of cancers and could be the targets for innovative therapeutical interventions based on highly selective splicing correction approaches.
Collapse
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207. 27100 Pavia, Italy
| | | | | |
Collapse
|
17
|
Karambataki M, Malousi A, Maglaveras N, Kouidou S. Synonymous polymorphisms at splicing regulatory sites are associated with CpGs in neurodegenerative disease-related genes. Neuromolecular Med 2010; 12:260-9. [PMID: 20077034 DOI: 10.1007/s12017-009-8111-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/17/2009] [Indexed: 01/10/2023]
Abstract
Neuronal plasticity is associated with alternative splicing and epigenetic modulation. Recent evidence reveals the association of cytosine methylation with alternative splicing and splicing regulatory mechanisms. Single nucleotide polymorphisms (SNPs) are generally less frequent in conserved coding regions and probably in splice sites, compared to non-coding regions. CpG polymorphisms in coding regions and splice sites and their association with splicing regulatory elements have not been investigated till presently. We currently analyzed the CpG variability in 28 genes (361 constitutive and 105 alternative exons and the corresponding splice sites) associated with neurodegenerative diseases (ND). CpG polymorphisms in the splice sites of these genes are particularly frequent when compared to those at AG sequences. Moreover, in both constitutive and alternative exons, polymorphisms in CpGs are more frequent than in AG, GT sequences. On the contrary, in the polypyrimidine acceptor sequence C/T conservation is prominent indicating that in this locus the sequence of cytosines and thymines is preserved. Bioinformatic analysis of the splicing-associated regulatory elements in these exons and splice sites reveals that 18 out of a total of 39 SNPs which could strongly affect splicing (>1.5 score difference) contain CpG sequences. Cytosines are considerably more frequent and variable than expected at the position preceding the GT splice donors, while sites of epigenetic modification are absent from acceptors. The high CpG frequency in polymorphic splicing-associated sites implicates the involvement of epigenetic mechanisms in splicing selection decisions regulated by these sites, and indicates the complexity of genetic studies involving these, tentatively critical, polymorphisms in ND.
Collapse
Affiliation(s)
- Maria Karambataki
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
18
|
Hrstka R, Coates PJ, Vojtesek B. Polymorphisms in p53 and the p53 pathway: roles in cancer susceptibility and response to treatment. J Cell Mol Med 2009; 13:440-53. [PMID: 19379143 PMCID: PMC3822507 DOI: 10.1111/j.1582-4934.2008.00634.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The p53 tumour suppressor protein lies at the crossroads of multiple cellular response pathways that control the fate of the cell in response to endogenous or exogenous stresses and inactivation of the p53 tumour suppressor signalling pathway is seen in most human cancers. Such aberrant p53 activity may be caused by mutations in the TP53 gene sequence producing truncated or inactive mutant proteins, or by aberrant production of other proteins that regulate p53 activity, such as gene amplification and overexpression of MDM2 or viral proteins that inhibit or degrade p53. Recent studies have also suggested that inherited genetic polymorphisms in the p53 pathway influence tumour formation, progression and/or response to therapy. In some cases, these variants are clearly associated with clinico-pathological variables or prognosis of cancer, whereas in other cases the evidence is less conclusive. Here, we review the evidence that common polymorphisms in various aspects of p53 biology have important consequences for overall tumour susceptibility, clinico-pathology and prognosis. We also suggest reasons for some of the reported discrepancies in the effects of common polymorphisms on tumourigenesis, which relate to the complexity of effects on tumour formation in combination with other oncogenic changes and other polymorphisms. It is likely that future studies of combinations of polymorphisms in the p53 pathway will be useful for predicting tumour susceptibility in the human population and may serve as predictive biomarkers of tumour response to standard therapies.
Collapse
Affiliation(s)
- Roman Hrstka
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Zlutý Kopec, Brno, Czech Republic
| | | | | |
Collapse
|
19
|
Kouidou S, Malousi A, Maglaveras N. Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53
are associated with exonic methylation and splicing regulatory elements. Mol Carcinog 2009; 48:895-902. [DOI: 10.1002/mc.20537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Abstract
The persistent difficulties in the production of protein at high levels in heterologous systems, as well as the inability to understand pathologies associated with protein aggregation, highlight our limited knowledge on the mechanisms of protein folding in vivo. Attempts to improve yield and quality of recombinant proteins are diverse, frequently involving optimization of the cell growth temperature, the use of synonymous codons and/or the co-expression of tRNAs, chaperones and folding catalysts among others. Although protein secondary structure can be determined largely by the amino acid sequence, protein folding within the cell is affected by a range of factors beyond amino acid sequence. The folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins and ligands, the ribosome, translocation through a pore membrane, redox conditions, among others. The translation rate as well as the translation machinery itself can dramatically affect protein folding, and thus the structure and function of the protein product. This review addresses current efforts to better understand how the use of synonymous codons in the mRNA and the availability of tRNAs can modulate translation kinetics, affecting the folding, the structure and the biological activity of proteins.
Collapse
Affiliation(s)
- Monica Marin
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
21
|
Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood 2008; 112:5111-21. [PMID: 18815290 DOI: 10.1182/blood-2008-02-141770] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To characterize genetic contributions toward aberrant splicing of the hyaluronan synthase 1 (HAS1) gene in multiple myeloma (MM) and Waldenstrom macroglobulinemia (WM), we sequenced 3616 bp in HAS1 exons and introns involved in aberrant splicing, from 17 patients. We identified a total of 197 HAS1 genetic variations (GVs), a range of 3 to 24 GVs/patient, including 87 somatic GVs acquired in splicing regions of HAS1. Nearly all newly identified inherited and somatic GVs in MM and/or WM were absent from B chronic lymphocytic leukemia, nonmalignant disease, and healthy donors. Somatic HAS1 GVs recurred in all hematopoietic cells tested, including normal CD34(+) hematopoietic progenitor cells and T cells, or as tumor-specific GVs restricted to malignant B and plasma cells. An in vitro splicing assay confirmed that HAS1 GVs direct aberrant HAS1 intronic splicing. Recurrent somatic GVs may be enriched by strong mutational selection leading to MM and/or WM.
Collapse
|
22
|
Scacchi R, Gambina G, Moretto G, Corbo RM. A mutation screening by DHPLC of PSEN1 and APP genes reveals no significant variation associated with the sporadic late-onset form of Alzheimer's disease. Neurosci Lett 2007; 418:282-5. [PMID: 17412506 DOI: 10.1016/j.neulet.2007.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/12/2007] [Accepted: 03/16/2007] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is usually divided into familial and sporadic forms, according to family history. The familial form has often been reportedly caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes, whereas the genetic component for the sporadic form is less clear. We carried out mutation screening in exons 16 and 17 of APP, and in exons 3, 4, 5, 6, 7, 10 of PSEN1 genes in patients with the sporadic late-onset form of AD (LOAD). The aim of this study was to ascertain whether any variation in these genes, besides that of the well-known apolipoprotein E common polymorphism, could be involved in the onset of the disease. To search for the single nucleotide substitutions, we examined 172 LOAD patients by the denaturing high-performance liquid chromatography (DHPLC) technique. Only one same-sense mutation in exon 4 of PSEN1 gene (N32) was observed in this patient group. We concluded that the variation in the screened exons of the APP and PSEN1 genes, reportedly associated with familial AD, is not present in LOAD.
Collapse
Affiliation(s)
- Renato Scacchi
- CNR Institute of Molecular Biology and Pathology, c/o Department of Genetics and Molecular Biology, University La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|