1
|
Jaiswal AS, Williamson EA, Srinivasan G, Kong K, Lomelino CL, McKenna R, Walter C, Sung P, Narayan S, Hromas R. The splicing component ISY1 regulates APE1 in base excision repair. DNA Repair (Amst) 2019; 86:102769. [PMID: 31887540 DOI: 10.1016/j.dnarep.2019.102769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the removal of oxidized or mono-alkylated DNA. While the main components of the BER pathway are well defined, its regulatory mechanism is not yet understood. We report here that the splicing factor ISY1 enhances apurinic/apyrimidinic endonuclease 1 (APE1) activity, the multifunctional enzyme in BER, by promoting its 5'-3' endonuclease activity. ISY1 expression is induced by oxidative damage, which would provide an immediate up-regulation of APE1 activity in vivo and enhance BER of oxidized bases. We further found that APE1 and ISY1 interact, and ISY1 enhances the ability of APE1 to recognize abasic sites in DNA. Using purified recombinant proteins, we reconstituted BER and demonstrated that ISY1 markedly promoted APE1 activity in both the short- and long-patch BER pathways. Our study identified ISY1 as a regulator of the BER pathway, which would be of physiological relevance where suboptimal levels of APE1 are present. The interaction of ISY1 and APE1 also establishes a connection between DNA damage repair and pre-mRNA splicing.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229 United States.
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229 United States
| | - Gayathri Srinivasan
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229 United States
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229 United States
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida Health, Gainesville, FL 32610 United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida Health, Gainesville, FL 32610 United States
| | - Christi Walter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229 United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520 San Antonio, TX 78229 United States
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610 United States
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229 United States.
| |
Collapse
|
2
|
Abstract
RNA polymerase II (Pol II) catalyzes the transcription of DNA to RNA in the nucleus. DNA alkylating cancer drugs can stall transcription; however, the basis for Pol II stalling when encountering a DNA template with minor-groove alkylation adducts has remained elusive due to its inherent chemical instability. We characterized the behavior of Pol II in transcription over minor-groove alkylation adducts and uncovered a previously unobserved mode of Pol II stalling wherein clashes between DNA adducts and the mobile trigger loop of RNA Pol II prevent translocation of the enzyme after nucleotide insertion. These results provide a molecular basis for how DNA damage in transcribed portions of the genome initiates DNA repair contributing to drug resistance. Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance.
Collapse
|
3
|
Ji Z, LeBaron MJ, Schisler MR, Zhang F, Bartels MJ, Gollapudi BB, Pottenger LH. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU. Mutagenesis 2015; 31:297-308. [PMID: 26040483 DOI: 10.1093/mutage/gev035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents.
Collapse
|
4
|
Burcham PC, Raso A, Henry PJ. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 2014; 319:44-52. [PMID: 24594012 DOI: 10.1016/j.tox.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/24/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | - Albert Raso
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter J Henry
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
5
|
Pottenger LH, Andrews LS, Bachman AN, Boogaard PJ, Cadet J, Embry MR, Farmer PB, Himmelstein MW, Jarabek AM, Martin EA, Mauthe RJ, Persaud R, Preston RJ, Schoeny R, Skare J, Swenberg JA, Williams GM, Zeiger E, Zhang F, Kim JH. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B1, tamoxifen and vinyl chloride. Crit Rev Toxicol 2014; 44:348-91. [DOI: 10.3109/10408444.2013.873768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Zeller A, Pfuhler S. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential. Mutagenesis 2013; 29:37-48. [PMID: 24275315 DOI: 10.1093/mutage/get053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant positive results in standard genotoxicity tests for this chemical class.
Collapse
Affiliation(s)
- Andreas Zeller
- The Procter and Gamble Co., Cosmital SA, Route de Chésalles 21, 1723 Marly, Switzerland
| | | |
Collapse
|
7
|
Elhajouji A, Lukamowicz M, Cammerer Z, Kirsch-Volders M. Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis 2010; 26:199-204. [DOI: 10.1093/mutage/geq089] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Pottenger LH, Schisler MR, Zhang F, Bartels MJ, Fontaine DD, McFadden LG, Bhaskar Gollapudi B. Dose-response and operational thresholds/NOAELs for in vitro mutagenic effects from DNA-reactive mutagens, MMS and MNU. Mutat Res 2009; 678:138-47. [PMID: 19616119 DOI: 10.1016/j.mrgentox.2009.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
The dose-response relationships for in vitro mutagenicity induced by methylmethanesulfonate (MMS) or methylnitrosourea (MNU) in L5178Y mouse lymphoma (ML) cells were examined. DNA adducts (N7-methylguanine, N7MeG and O(6)-methylguanine, O(6)MeG) were quantified as biomarkers of exposure. Both endpoints were assessed using 5replicates/dose (4-h treatment) with MMS or MNU (0.0069-50muM), or vehicle (1% DMSO). Mutant frequency (MF) (thymidine kinase (TK) locus) was determined using the soft agar cloning methodology and a 2-day expression period; in addition, microwell and Sequester-Express-Select (SES) methods were used for MMS. Isolated DNA was acid-hydrolyzed, and adducts quantified by LC/ESI-MS/MS, using authentic and internal standards. MF dose-responses were analyzed using several statistical approaches, all of which confirmed that a threshold dose-response model provided the best fit. NOAELs for MF were 10muM MMS and 0.69muM MNU, based on ANOVA and Dunnett's test (p<0.05). N7MeG adducts were present in all cell samples, including solvent-control cells, and were increased over control levels in cells treated with >/=10muM MMS or 3.45muM MNU. O(6)MeG levels were only quantifiable at >/=10muM MNU; O(6)MeG was not quantifiable in control or MMS-treated cells at current detection limits. Thus, (1) cells treated with </=0.69muM MNU or </=10muM MMS did not demonstrate increases in TK(-) MF, but did demonstrate quantifiable levels of N7MeG adducts; and (2) the levels of N7MeG adducts did not correlate with induced MF, as MNU-treated cells had fewer N7MeG adducts but higher MF compared with MMS-treated cells, for quasi-equimolar doses. Taken together, these results demonstrate operational thresholds, defined as the highest dose for which the response is not significantly (statistically or biologically) distinguishable from the control/background values, for induction of mutations and N7MeG adducts in ML cells treated with MMS or MNU, and a lack of correlation between induced MF and levels of N7MeG adducts.
Collapse
Affiliation(s)
- Lynn H Pottenger
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI 48674, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Brink A, Richter I, Lutz U, Wanek P, Stopper H, Lutz WK. Biological significance of DNA adducts: comparison of increments over background for various biomarkers of genotoxicity in L5178Y tk(+/-) mouse lymphoma cells treated with hydrogen peroxide and cumene hydroperoxide. Mutat Res 2009; 678:123-8. [PMID: 19539047 DOI: 10.1016/j.mrgentox.2009.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/08/2009] [Indexed: 11/26/2022]
Abstract
DNA is affected by background damage of the order of one lesion per one hundred thousand nucleotides, with depurination and oxidative damage accounting for a major part. This damage contributes to spontaneous mutation and cancer. DNA adducts can be measured with high sensitivity, with limits of detection lower than one adduct per one billion nucleotides. Minute exposures to an exogenous DNA-reactive agent may therefore result in measurable adduct formation, although, as an increment over total DNA damage, a small increment in mutation cannot be measured and would be considered negligible. Here, we investigated whether this discrepancy also holds for adducts that are present as background induced by oxidative stress. L5178Y tk(+/-) mouse lymphoma cells were incubated for 4h with hydrogen peroxide (0, 0.8, 4, 20, 100, 500muM) or cumene hydroperoxide (0, 0.37, 1.1, 3.3, 10muM). Five endpoints of genotoxicity were measured in parallel from aliquots of three replicates of large batches of cells: Two DNA adducts, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 1,N(6)-etheno-2'-deoxyadenosine (varepsilondAdo) measured by LC-MS/MS, as well as strand breaks assessed with the comet assay and in vitro micronucleus test, and gene mutation as assessed using the thymidine kinase gene mutation assay. Background measures of 8-oxodGuo and varepsilondAdo were 500-1000 and 50-90 adducts per 10(9) nucleotides. Upon treatment, neither hydrogen peroxide nor cumene hydroperoxide significantly increased the DNA adduct levels above control. In contrast, dose-related increases above background were observed with both oxidants in the comet assay, the micronucleus test and the gene mutation assay. Differences in sensitivity of the assays were quantified by estimating the concentration of oxidant that resulted in a doubling of the background measure. We conclude that the increase in DNA breakage and mutation induced by hydrogen peroxide and cumene hydroperoxide observed in our in vitro experimental set-up was no direct consequence of the measured DNA adducts. In comparison with data obtained with the methylating agent methyl methanesulfonate we further conclude that the assumption of DNA adducts being oversensitive biomarkers is adduct-specific.
Collapse
Affiliation(s)
- Andreas Brink
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Stopper H, Schupp N, Fazeli G, Dietel B, Queisser N, Walitza S, Gerlach M. Genotoxicity of the neurotransmitter dopamine in vitro. Toxicol In Vitro 2009; 23:640-6. [DOI: 10.1016/j.tiv.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 02/13/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
11
|
Lutz WK, Lutz RW. Statistical model to estimate a threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for mutagenicity data. Mutat Res 2009; 678:118-22. [PMID: 19477296 DOI: 10.1016/j.mrgentox.2009.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Strongly sublinear dose-response relationships (slope increasing with dose) raise the question about a putative threshold dose below which no biologically relevant effect would be expected. A mathematical threshold with a break in the curve at the threshold dose is generally rejected for consequences of genotoxicity such as mutation, because proportionality between low dose and the rate of DNA-adduct formation is a reasonable hypothesis. In view of an increasing database for distinct deviation from linearity for mutagenicity, we offer a statistical model to analyze continuous response data and estimate a threshold dose together with its confidence limits, thereby taking data quality and degree of sublinearity into account. The simplest mathematical threshold model is a hockey stick defined by a low-dose part with slope zero at background level a to a theoretical break point at threshold dose td, followed by a linear increase above td with slope b. The function is y (dose d)=a+bx(d-td)x1([d>td]). Using the free statistics software package "R", we make a procedure available to estimate the parameters a, b, and td. Confidence intervals are calculated for all parameters at a significance level that can be defined by the user. If the lower limit of the confidence interval for td is >0, linearity is rejected. The procedure is illustrated by two examples. A small data set with three replicates per dose group, indicating a threshold for the induction of thymidine kinase mutants in L5178Y tk(+/-) mouse lymphoma cells treated with methyl methanesulfonate, did not achieve significance. On the other hand, the large data set reported in this issue (Gocke et al.) on lacZ mutants in bone marrow cells of transgenic mice treated with ethyl methanesulfonate strongly favoured the hockey stick model. The question of a theoretically expected linear dose-related increase below the threshold dose is addressed by linear regression of the data below the break point and estimation of an upper limit of the slope. The question of biological relevance of the resulting slope is discussed against the normal variation of background measures in the control group.
Collapse
Affiliation(s)
- Werner K Lutz
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | |
Collapse
|
12
|
The formation and biological significance of N7-guanine adducts. Mutat Res 2009; 678:76-94. [PMID: 19465146 DOI: 10.1016/j.mrgentox.2009.05.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 11/24/2022]
Abstract
DNA alkylation or adduct formation occurs at nucleophilic sites in DNA, mainly the N7-position of guanine. Ever since identification of the first N7-guanine adduct, several hundred studies on DNA adducts have been reported. Major issues addressed include the relationships between N7-guanine adducts and exposure, mutagenesis, and other biological endpoints. It became quickly apparent that N7-guanine adducts are frequently formed, but may have minimal biological relevance, since they are chemically unstable and do not participate in Watson Crick base pairing. However, N7-guanine adducts have been shown to be excellent biomarkers for internal exposure to direct acting and metabolically activated carcinogens. Questions arise, however, regarding the biological significance of N7-guanine adducts that are readily formed, do not persist, and are not likely to be mutagenic. Thus, we set out to review the current literature to evaluate their formation and the mechanistic evidence for the involvement of N7-guanine adducts in mutagenesis or other biological processes. It was concluded that there is insufficient evidence that N7-guanine adducts can be used beyond confirmation of exposure to the target tissue and demonstration of the molecular dose. There is little to no evidence that N7-guanine adducts or their depurination product, apurinic sites, are the cause of mutations in cells and tissues, since increases in AP sites have not been shown unless toxicity is extant. However, more research is needed to define the extent of chemical depurination versus removal by DNA repair proteins. Interestingly, N7-guanine adducts are clearly present as endogenous background adducts and the endogenous background amounts appear to increase with age. Furthermore, the N7-guanine adducts have been shown to convert to ring opened lesions (FAPy), which are much more persistent and have higher mutagenic potency. Studies in humans are limited in sample size and differences between controls and study groups are small. Future investigations should involve human studies with larger numbers of individuals and analysis should include the corresponding ring opened FAPy derivatives.
Collapse
|
13
|
Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk+/− mouse lymphoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:127-32. [DOI: 10.1016/j.mrgentox.2008.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/22/2008] [Accepted: 08/16/2008] [Indexed: 11/23/2022]
|