1
|
Pereira EEB, Leitão LPC, Andrade RB, Modesto AAC, Fernandes BM, Burbano RMR, Assumpção PP, Fernandes MR, Guerreiro JF, dos Santos SEB, dos Santos NPC. UGT1A1 Gene Polymorphism Contributes as a Risk Factor for Lung Cancer: A Pilot Study with Patients from the Amazon. Genes (Basel) 2022; 13:493. [PMID: 35328047 PMCID: PMC8954358 DOI: 10.3390/genes13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most frequent neoplasms in the world. Because it is a complex disease, its formation occurs in several stages, stemming from interactions between environmental risk factors, such as smoking, and individual genetic susceptibility. Our objective was to investigate associations between a UGT1A1 gene polymorphism (rs8175347) and lung cancer risk in an Amazonian population. This is a pilot study, case-controlled study, which included 276 individuals with cancer and without cancer. The samples were analyzed for polymorphisms of the UGT1A1 gene (rs8175347) and genotyped in PCR, followed by fragment analysis in which we applied a previously developed set of informative ancestral markers. We used logistic regression to identify differences in allelic and genotypic frequencies between individuals. Individuals with the TA7 allele have an increased chance of developing lung adenocarcinoma (p = 0.035; OR: 2.57), as well as those with related genotypes of reduced or low enzymatic activity: TA6/7, TA5/7, and TA7/7 (p = 0.048; OR: 8.41). Individuals with homozygous TA7/7 have an increased chance of developing squamous cell carcinoma of the lung (p = 0.015; OR: 4.08). Polymorphism in the UGT1A1 gene (rs8175347) may contribute as a risk factor for adenocarcinoma and lung squamous cell carcinoma in the population of the Amazon region.
Collapse
Affiliation(s)
- Esdras E. B. Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Luciana P. C. Leitão
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Roberta B. Andrade
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Antônio A. C. Modesto
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Bruno M. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Rommel M. R. Burbano
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Paulo P. Assumpção
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Marianne R. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - João F. Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Sidney E. B. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| | - Ney P. C. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, Brazil; (E.E.B.P.); (R.B.A.); (A.A.C.M.); (R.M.R.B.); (J.F.G.); (S.E.B.d.S.); (N.P.C.d.S.)
- Oncology Research Center, Federal University of Pará, Belem 66073-005, Brazil; (L.P.C.L.); (B.M.F.); (P.P.A.)
| |
Collapse
|
2
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Seyed Khoei N, Anton G, Peters A, Freisling H, Wagner KH. The Association between Serum Bilirubin Levels and Colorectal Cancer Risk: Results from the Prospective Cooperative Health Research in the Region of Augsburg (KORA) Study in Germany. Antioxidants (Basel) 2020; 9:E908. [PMID: 32987702 PMCID: PMC7598693 DOI: 10.3390/antiox9100908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging studies have suggested that bilirubin, particularly unconjugated bilirubin (UCB), has substantial anti-inflammatory and antioxidant properties that protect against oxidative stress-associated diseases such as cancer. Few observational studies have investigated the etiological role of bilirubin in colorectal cancer (CRC) development. In this case-control study, nested in the population-based prospective cohort of the Cooperative Health Research in the Region of Augsburg (KORA) study in south Germany, pre-diagnostic circulating UCB concentrations were measured by high-performance liquid chromatography in 77 CRC cases and their individually matched controls. Multivariable unconditional logistic regression was used to estimate the odds ratios (OR) and 95% confidence intervals (CI) for associations between log-transformed UCB levels (log-UCB), standardized per one-standard-deviation (one-SD) increment, and CRC risk. The models were a priori stratified by sex based on previous evidence. In the fully adjusted models, each one-SD increment in log-UCB was indicative of a positive association with CRC risk (OR, 1.20; 95% CI, 0.52-2.79) among men, and of an inverse association (OR, 0.76; 95% CI, 0.34-1.84) among women (Pheterogeneity = 0.4 for differences between men and women). We found little evidence for sex-specific associations of circulating bilirubin with CRC risk, and further studies are needed to confirm or refute the potential associations.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany; (G.A.); (A.P.)
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France;
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria;
| |
Collapse
|
4
|
Tang D, Zhao YC, Liu H, Luo S, Clarke JM, Glass C, Su L, Shen S, Christiani DC, Gao W, Wei Q. Potentially functional genetic variants in PLIN2, SULT2A1 and UGT1A9 genes of the ketone pathway and survival of nonsmall cell lung cancer. Int J Cancer 2020; 147:1559-1570. [PMID: 32072637 PMCID: PMC8078192 DOI: 10.1002/ijc.32932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
The ketone metabolism pathway is a principle procedure in physiological homeostasis and induces cancer cells to switch between glycolysis and oxidative phosphorylation for energy production. We conducted a two-phase analysis for associations between genetic variants in the ketone metabolism pathway genes and survival of nonsmall cell lung cancer (NSCLC) by analyzing genotyping data from two published genome-wide association studies (GWASs). In the discovery, we used a genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the multivariable Cox proportional hazards regression analysis. We used Bayesian false discovery probability (≤0.80) for multiple testing correction to evaluate associations between 25,819 (2,176 genotyped and 23,643 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and survival of 1,185 NSCLC patients. Subsequently, we validated the identified significant SNPs with an additional 984 NSCLC patients from the Harvard Lung Cancer Susceptibility GWAS study. Finally, we found that three independent and potentially functional SNPs in three different genes (i.e., PLIN2 rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T) were independently associated with risk of death from NSCLC, with a combined hazards ratio of 1.22 [95% confidence interval = 1.09-1.36 and p = 0.0003], 0.82 (0.74-0.91 and p = 0.0002) and 1.21 (1.10-1.33 and p = 0.0001), respectively. Additional expression quantitative trait loci analysis found that the survival-associated PLIN2 rs7867814 GA + AA genotypes, but not the genotypes of other two SNPs, were significantly associated with increased mRNA expression levels (p = 0.005). These results indicated that PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 expression.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey M. Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wen Gao
- Department of Thoracic Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Seyed Khoei N, Jenab M, Murphy N, Banbury BL, Carreras-Torres R, Viallon V, Kühn T, Bueno-de-Mesquita B, Aleksandrova K, Cross AJ, Weiderpass E, Stepien M, Bulmer A, Tjønneland A, Boutron-Ruault MC, Severi G, Carbonnel F, Katzke V, Boeing H, Bergmann MM, Trichopoulou A, Karakatsani A, Martimianaki G, Palli D, Tagliabue G, Panico S, Tumino R, Sacerdote C, Skeie G, Merino S, Bonet C, Rodríguez-Barranco M, Gil L, Chirlaque MD, Ardanaz E, Myte R, Hultdin J, Perez-Cornago A, Aune D, Tsilidis KK, Albanes D, Baron JA, Berndt SI, Bézieau S, Brenner H, Campbell PT, Casey G, Chan AT, Chang-Claude J, Chanock SJ, Cotterchio M, Gallinger S, Gruber SB, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu L, Huyghe JR, Jenkins MA, Joshi AD, Kampman E, Larsson SC, Le Marchand L, Li CI, Li L, Lindblom A, Lindor NM, Martín V, Moreno V, Newcomb PA, Offit K, Ogino S, Parfrey PS, Pharoah PDP, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Slattery ML, Thibodeau SN, Ulrich CM, van Duijnhoven FJB, Weigl K, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Zhang X, Ferrari P, Anton G, Peters A, Peters U, Gunter MJ, Wagner KH, Freisling H. Circulating bilirubin levels and risk of colorectal cancer: serological and Mendelian randomization analyses. BMC Med 2020; 18:229. [PMID: 32878631 PMCID: PMC7469292 DOI: 10.1186/s12916-020-01703-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex. METHODS In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P < 5 × 10-8) with circulating total bilirubin were instrumented in a 2-sample MR to test for a potential causal effect of bilirubin on CRC risk in 52,775 CRC cases and 45,940 matched controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colon Cancer Family Registry (CCFR), and the Colorectal Transdisciplinary (CORECT) study. RESULTS The associations between circulating UCB levels and CRC risk differed by sex (Pheterogeneity = 0.008). Among men, higher levels of UCB were positively associated with CRC risk (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.04-1.36; per 1-SD increment of log-UCB). In women, an inverse association was observed (OR = 0.86 (0.76-0.97)). In the MR analysis of the main UGT1A1 SNP (rs6431625), genetically predicted higher levels of total bilirubin were associated with a 7% increase in CRC risk in men (OR = 1.07 (1.02-1.12); P = 0.006; per 1-SD increment of total bilirubin), while there was no association in women (OR = 1.01 (0.96-1.06); P = 0.73). Raised bilirubin levels, predicted by instrumental variables excluding rs6431625, were suggestive of an inverse association with CRC in men, but not in women. These differences by sex did not reach formal statistical significance (Pheterogeneity ≥ 0.2). CONCLUSIONS Additional insight into the relationship between circulating bilirubin and CRC is needed in order to conclude on a potential causal role of bilirubin in CRC development.
Collapse
Affiliation(s)
- Nazlisadat Seyed Khoei
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Mazda Jenab
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Neil Murphy
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Krasimira Aleksandrova
- Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Magdalena Stepien
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Andrew Bulmer
- School of Medicine, Griffith University, Brisbane, QLD, Australia
- Alliance for Vascular Access Teaching and Research (AVATAR), Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Christine Boutron-Ruault
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Franck Carbonnel
- CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Department of Gastroenterology, Bicêtre University Hospital, Public Assistance Hospitals of Paris, Le Kremlin Bicêtre, France
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition Postdam-Rehbrücke, Nuthetal, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, "M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
- Nutritional Epidemiology Group, School of Food and Nutrition, University of Leeds, Leeds, UK
| | | | - Catalina Bonet
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria, ibs. GRANADA, Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, San Sebastian, Spain
| | - Maria-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Eva Ardanaz
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Robin Myte
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Vicente Martín
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain
- Cancer Epidemiology Research Program, Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, Newfoundland, Canada
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular, and Transplantation Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, CA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pietro Ferrari
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Gabriele Anton
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Marc J Gunter
- Nutritional Epidemiology Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Heinz Freisling
- Nutritional Methodology and Biostatistics Group, Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), 150 cours Albert Thomas, 69372, Lyon CEDEX 08, France.
| |
Collapse
|
6
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
7
|
Liu G, Ruan G, Huang M, Chen L, Sun P. Genome-wide DNA copy number profiling and bioinformatics analysis of ovarian cancer reveals key genes and pathways associated with distinct invasive/migratory capabilities. Aging (Albany NY) 2020; 12:178-192. [PMID: 31895688 PMCID: PMC6977652 DOI: 10.18632/aging.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OC) metastasis presents major hurdles that must be overcome to improve patient outcomes. Recent studies have demonstrated copy number variations (CNVs) frequently contribute to alterations in oncogenic drivers. The present study used a CytoScan HD Array to analyse CNVs and loss of heterozygosity (LOH) in the entire genomes of 6 OC patients and human OC cell lines to determine the genetic target events leading to the distinct invasive/migratory capacities of OC. The results showed that LOH at Xq11.1 and Xp21.1 and gains at 8q21.13 were novel, specific CNVs. Ovarian cancer-related CNVs were then screened by bioinformatics analysis. In addition, transcription factors-target gene interactions were predicted with information from PASTAA analysis. As a result, six genes (i.e., GAB2, AKT1, EGFR, COL6A3, UGT1A1 and UGT1A8) were identified as strong candidates by integrating the above data with gene expression and clinical outcome data. In the transcriptional regulatory network, 4 known cancer-related transcription factors (TFs) interacted with 6 CNV-driven genes. The protein/DNA arrays revealed 3 of these 4 TFs as potential candidate gene-related transcription factors in OC. We then demonstrated that these six genes can serve as potential biomarkers for OC. Further studies are required to elucidate the pathogenesis of OC.
Collapse
Affiliation(s)
- GuiFen Liu
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - GuanYu Ruan
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - MeiMei Huang
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - LiLi Chen
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - PengMing Sun
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China.,Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
8
|
Jin Y, Chen G, Xiao W, Hong H, Xu J, Guo Y, Xiao W, Shi T, Shi L, Tong W, Ning B. Sequencing XMET genes to promote genotype-guided risk assessment and precision medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 62:895-904. [PMID: 31114935 DOI: 10.1007/s11427-018-9479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022]
Abstract
High-throughput next generation sequencing (NGS) is a shotgun approach applied in a parallel fashion by which the genome is fragmented and sequenced through small pieces and then analyzed either by aligning to a known reference genome or by de novo assembly without reference genome. This technology has led researchers to conduct an explosion of sequencing related projects in multidisciplinary fields of science. However, due to the limitations of sequencing-based chemistry, length of sequencing reads and the complexity of genes, it is difficult to determine the sequences of some portions of the human genome, leaving gaps in genomic data that frustrate further analysis. Particularly, some complex genes are difficult to be accurately sequenced or mapped because they contain high GC-content and/or low complexity regions, and complicated pseudogenes, such as the genes encoding xenobiotic metabolizing enzymes and transporters (XMETs). The genetic variants in XMET genes are critical to predicate inter-individual variability in drug efficacy, drug safety and susceptibility to environmental toxicity. We summarized and discussed challenges, wet-lab methods, and bioinformatics algorithms in sequencing "complex" XMET genes, which may provide insightful information in the application of NGS technology for implementation in toxicogenomics and pharmacogenomics.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenming Xiao
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenzhong Xiao
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Cancer Center; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
9
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Anon B, Perray C, Regnault D, Caulet M, Orain I, Godart B, Pages JC, Tallet A, Ouaissi M, Guyetant S, Barin-le Guellec C, Lecomte T. A study of the association between UGT1A1*28 variant allele of UGT1A1 gene and colonic phenotype of sporadic colorectal cancer. Dig Liver Dis 2019; 51:579-583. [PMID: 30583998 DOI: 10.1016/j.dld.2018.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The transcriptional activity of the UGT1A1 gene is modulated by a variable number of repetitions of the dinucleotide (TA) within its promoter region. By comparison to the most common allele (TA)6 (UGT1A1*1), decreased activity is observed with increasing TA repetitions. The aim of this study was to determine whether the presence of the variant allele UGT1A1*28, harbouring seven TA repetitions, (TA)7, in the homozygous state, is associated with precancerous colonic lesions and/or with specific colorectal cancer characteristics. MATERIAL AND METHODS All patients treated for colorectal cancer in a tertiary care centre, between January 2009 and December 2013, who had routine UGT1A1 genotyping for irinotecan dose-adjustment were included. Data were retrospectively collected. RESULTS 292 patients were enrolled, including 23 UGT1A1*28/*28 homozygous (7.9%), 137 wild type homozygous (46.9%) and 132 heterozygous (45.2%). There were no significant differences in phenotypic colonic characteristics between homozygous and heterozygous patients carrying the UGT1A1*28 allele as compared to *1/*1 homozygous. Patients treated with aspirin were significantly more common in the UGT1A1*28/*28 homozygous group than in the other groups (7/23 (30.4%) compared to 22/269 (8.2%), p = 0.001). CONCLUSION Dinucleotide polymorphism in the promoter region of the UGT1A1 gene is not associated with a specific colonic phenotype in patients with sporadic colorectal cancer.
Collapse
Affiliation(s)
- Benjamin Anon
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France.
| | - Clémence Perray
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France
| | - David Regnault
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France
| | - Morgane Caulet
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France
| | | | - Bruno Godart
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France
| | | | - Anne Tallet
- Platform of Somatic Tumour Molecular Genetics, Tours, France
| | | | | | - Chantal Barin-le Guellec
- University of Tours, Tours, France; Department of Molecular Biology, Tours, France; INSERM, UMR 1248, Université de Limoges, Limoges, France
| | - Thierry Lecomte
- Department of Hepatogastroenterology and Digestive Oncology, Tours, France; EA 7501 (GICC), Université de Tours, France
| |
Collapse
|
11
|
Bhasin N, Alleyne D, Gray OA, Kupfer SS. Vitamin D Regulation of the Uridine Phosphorylase 1 Gene and Uridine-Induced DNA Damage in Colon in African Americans and European Americans. Gastroenterology 2018; 155:1192-1204.e9. [PMID: 29964038 PMCID: PMC6866230 DOI: 10.1053/j.gastro.2018.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS African Americans have the greatest colorectal cancer (CRC) burden in the United States; interethnic differences in protective effects of vitamin D might contribute to disparities. 1α,25(OH)2D3 vitamin D (the active form of vitamin D) induces transcription of the uridine phosphorylase gene (UPP1) in colon tissues of European Americans but to a lesser extent in colon tissues of African Americans. UPP1-knockout mice have increased intestinal concentrations of uridine and Deoxyuridine triphosphate (dUTP), have increased uridine-induced DNA damage, and develop colon tumors. We studied 1α,25(OH)2D3 regulation of UPP1 and uridine-induced DNA damage in the colon and differences in these processes between African and European Americans. METHODS We quantified expression and activity of UPP1 in response to 1α,25(OH)2D3 in young adult mouse colonic cells, human CRC cells (LS174T), and organoids (derived from rectosigmoid biopsy samples of healthy individuals undergoing colonoscopies) using quantitative polymerase chain reaction, immunoblot, and immunocytochemistry assays. Binding of the vitamin D receptor to UPP1 was tested by chromatin immunoprecipitation. Uridine-induced DNA damage was measured by fragment-length analysis in repair enzyme assays. Allele-specific 1α,25(OH)2D3 responses were tested using luciferase assays. RESULTS Vitamin D increased levels of UPP1 mRNA, protein, and enzymatic activity and increased vitamin D receptor binding to the UPP1 promoter in young adult mouse colonic cells, LS174T cells, and organoids. 1α,25(OH)2D3 significantly reduced levels of uridine and uridine-induced DNA damage in these cells, which required UPP1 expression. Organoids derived from colon tissues of African Americans expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 and had increased uridine-induced DNA damage compared with organoids derived from tissues of European Americans. Luciferase assays with the T allele of single nucleotide polymorphism rs28605337 near UPP1, which is found more frequently in African Americans than European Americans, expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 than assays without this variant. CONCLUSIONS We found vitamin D to increase expression of UPP1, leading to reduce uridine-induced DNA damage, in colon cells and organoids. A polymorphism in UPP1 found more frequently in African Americans than European Americans reduced UPP1 expression upon cell exposure to 1α,25(OH)2D3. Differences in expression of UPP1 in response to vitamin D could contribute to the increased risk of CRC in African Americans.
Collapse
Affiliation(s)
- Nobel Bhasin
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Dereck Alleyne
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Olivia A. Gray
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Sonia S. Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Common variants in glucuronidation enzymes and membrane transporters as potential risk factors for colorectal cancer: a case control study. BMC Cancer 2017; 17:901. [PMID: 29282011 PMCID: PMC5745594 DOI: 10.1186/s12885-017-3728-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Background Associations between polymorphisms of UDP-glucuronosyltransferases (UGTs) or efflux transporters (e.g., P-glycoprotein and MRP2) and different types of cancer have been described, whereas the role of influx transporters (e.g. OATP1B1 and OATP2B1) has been seldom explored. The GenColon study investigated potential associations between variant alleles of UGTs, efflux and influx transporters and CRC. Methods Three hundred CRC cases were matched with 300 controls for age, sex and enrolment site. Fifteen SNPs in UGT1A6–9, UGT2B7, ABCB1, ABCC2, SLCO1B1 and SLCO2B1 genes were characterized using Taqman® PCR. Using multivariate conditional logistic regression, we investigated the relationships between CRC and “environmental” risk factors (physical activity, housing and working areas, consumption of red meat, tobacco, alcohol); genetic polymorphisms, in the study population and in the subgroups with “environmental” risk factors. Results No significant association was observed for the analyzed SNPs (or haplotypes). However, an increased CRC risk was found in carriers of the UGT1A8 rs1042597-G variant allele (additive risk OR = 3.39[1.29–8.89], p = 0.02951) in the subgroup of meat-consumers (n = 84), and in carriers of the ABCB1 rs1045642-T (exon26) variant allele (additive risk; OR = 1.89[1.10–3.39], p = 0.0257) in the “never alcohol consumption subgroup” (n = 125). In addition, as previously reported, the following CRC risk factors were identified: absence of physical activity (OR = 6.35[3.70–10.9], p < 0.0001), living or working in rural or mix area (OR = 2.50[1.48–4.23], p = 0.0006 and OR = 2.99[1.63–5.48], p = 0.004, respectively) and tobacco exposure >30 years (3.37[1.63–6.96], p = 0.0010). Conclusions Variant genotypes of influx transporters (OATP1B1 and 2B1) were not associated with CRC. This study confirmed the influence of lifestyle factors, but not the previously reported detrimental effect of SNPs in intestinal UGTs or efflux transporters, except for a UGT1A8 variant in subjects consuming meat and the exon 26 SNP of ABCB1 in the never alcohol consumption subgroup. Trial registration Registered in Direction Générale de la Santé the 1st July 2008 under the number DGS2008–0144. Electronic supplementary material The online version of this article (10.1186/s12885-017-3728-0) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Bacqueville D, Jacques C, Duprat L, Jamin EL, Guiraud B, Perdu E, Bessou-Touya S, Zalko D, Duplan H. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles. Toxicol Appl Pharmacol 2017; 329:190-201. [PMID: 28601433 DOI: 10.1016/j.taap.2017.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 11/15/2022]
Abstract
In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.
Collapse
Affiliation(s)
- Daniel Bacqueville
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France.
| | - Carine Jacques
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Laure Duprat
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Beatrice Guiraud
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Elisabeth Perdu
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Duplan
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| |
Collapse
|
14
|
Khojasteh SC, Rietjens IMCM, Dalvie D, Miller G. Biotransformation and bioactivation reactions - 2016 literature highlights. Drug Metab Rev 2017; 49:285-317. [PMID: 28468514 DOI: 10.1080/03602532.2017.1326498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We are pleased to present a second annual issue highlighting a previous year's literature on biotransformation and bioactivation. Each contributor to this issue worked independently to review the articles published in 2016 and proposed three to four articles, which he or she believed would be of interest to the broader research community. In each synopsis, the contributing author summarized the procedures, analyses and conclusions as described in the original manuscripts. In the commentary sections, our authors offer feedback and highlight aspects of the work that may not be apparent from an initial reading of the article. To be fair, one should still read the original article to gain a more complete understanding of the work conducted. Most of the articles included in this review were published in Drug Metabolism and Disposition or Chemical Research in Toxicology, but attempts were made to seek articles in 25 other journals. Importantly, these articles are not intended to represent a consensus of the best papers of the year, as we did not want to make any arbitrary standards for this purpose, but rather they were chosen by each author for their notable findings and descriptions of novel metabolic pathways or biotransformations. I am pleased that Drs. Rietjens and Dalvie have again contributed to this annual review. We would like to welcome Grover P Miller as an author for this year's issue, and we thank Tom Baillie for his contributions to last year's edition. We have intentionally maintained a balance of authors such that two come from an academic setting and two come from industry. Finally, please drop us a note if you find this review helpful. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. This article is dedicated to Professor Thomas Baillie for his exceptional contributions to the field of drug metabolism.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- a Department of Drug Metabolism and Pharmacokinetics , Genentech, Inc , South San Francisco , CA , USA
| | | | - Deepak Dalvie
- c Drug Metabolism and Pharmacokinetics, Celgene Corporation , San Diego , CA USA
| | - Grover Miller
- d Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
15
|
Chiavarini M, Bertarelli G, Minelli L, Fabiani R. Dietary Intake of Meat Cooking-Related Mutagens (HCAs) and Risk of Colorectal Adenoma and Cancer: A Systematic Review and Meta-Analysis. Nutrients 2017; 9:nu9050514. [PMID: 28524104 PMCID: PMC5452244 DOI: 10.3390/nu9050514] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Much evidence suggests that the positive association between meat intake and colorectal adenoma (CRA) and cancer (CRC) risk is mediated by mutagenic compounds generated during cooking at high temperature. A number of epidemiological studies have estimated the effect of meat-related mutagens intake on CRC/CRA risk with contradictory and sometimes inconsistent results. A literature search was carried out (PubMed, Web of Science and Scopus) to identify articles reporting the relationship between the intake of meat-related mutagens (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline: DiMeIQx, benzo(a) pyrene (B(a)P) and "meat derived mutagenic activity" (MDM)) and CRC/CRA risk. A random-effect model was used to calculate the risk association. Thirty-nine studies were included in the systematic review and meta-analysis. Polled CRA risk (15229 cases) was significantly increased by intake of PhIP (OR = 1.20; 95% CI: 1.13,1.28; p < 0.001), MeIQx (OR = 1.14; 95% CI: 1.05,1.23; p = 0.001), DiMeIQx (OR = 1.13; 95% CI: 1.05,1.21; p = 0.001), B(a)P (OR = 1.10; 95% CI: 1.02,1.19; p = 0.017) and MDM (OR = 1.17; 95% CI: 1.07,1.28; p = 0.001). A linear and curvilinear trend was observed in dose-response meta-analysis between CRA risk in association with PhIP, MDM, and MeIQx. CRC risk (21,344 cases) was increased by uptake of MeIQx (OR = 1.14; 95% CI: 1.04,1.25; p = 0.004), DiMeIQx (OR = 1.12; 95% CI: 1.02,1.22; p = 0.014) and MDM (OR = 1.12; 95% CI: 1.06,1.19; p < 0.001). No publication bias could be detected, whereas heterogeneity was in some cases rather high. Mutagenic compounds formed during cooking of meat at high temperature may be responsible of its carcinogenicity.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Gaia Bertarelli
- Department of Economics, University of Perugia, 06123 Perugia, Italy.
| | - Liliana Minelli
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
16
|
Cao Y, Zhang G, Wang P, Zhou J, Gan W, Song Y, Huang L, Zhang Y, Luo G, Gong J, Zhang L. Clinical significance of UGT1A1 polymorphism and expression of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A in gastric cancer. BMC Gastroenterol 2017; 17:2. [PMID: 28056823 PMCID: PMC5217235 DOI: 10.1186/s12876-016-0561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Individualized therapeutic regimen is a recently intensively pursued approach for targeting diseases, in which the search for biomarkers was considered the first and most important. Thus, the goal of this study was to investigate whether the UGT1A1, ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A genes are underlying biomarkers for gastric cancer, which, to our knowledge, has not been performed. METHODS Ninety-eight tissue specimens were collected from gastric cancer patients between May 2012 and March 2015. A multiplex branched DNA liquidchip technology was used for measuring the mRNA expressions of ERCC1, BRCA1, TYMS, RRM1, TUBB3, STMN1 and TOP2A. Direct sequencing was performed for determination of UGT1A1 polymorphisms. Furthermore, correlations between gene expressions, polymorphisms and clinicopathological characteristics were investigated. RESULTS The expressions of TYMS, TUBB3 and STMN1 were significantly associated with the clinicopathological characteristics of age, gender and family history of gastric cancer, but not with differentiation, growth patterns, metastasis and TNM staging in patients with gastric cancer. No clinical characteristics were correlated with the expressions of ERCC1, BRCA1, RRM1 and TOP2A. Additionally, patients carrying G allele at -211 of UGT1A1 were predisposed to developing tubular adenocarcinoma, while individuals carrying 6TAA or G allele respectively at *28 or -3156 of UGT1A1 tended to have a local invasion. CONCLUSIONS The UGT1A1 polymorphism may be useful to screen the risk population of gastric cancer, while TYMS, TUBB3 and STMN1 may be potential biomarkers for prognosis and chemotherapy guidance.
Collapse
Affiliation(s)
- Yongkuan Cao
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China.
| | - Guohu Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Peihong Wang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Wei Gan
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Yaning Song
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ling Huang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Ya Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Guode Luo
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Jiaqing Gong
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| | - Lin Zhang
- Department of Gastrointestinal Surgery, Center of General Surgery of P.L.A., Chengdu Army General Hospital, No.270 Rongdu avenue, Chengdu, 610083, Sichuan Province, China
| |
Collapse
|
17
|
Abstract
2-Amino-9H-pyrido[2,3-b]indole (AαC) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are carcinogenic heterocyclic aromatic amines (HAA) that arise during the burning of tobacco and cooking of meats. UDP-glucuronosyltransferases (UGT) detoxicate many procarcinogens and their metabolites. The genotoxic N-hydroxylated metabolite of AαC, 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC), undergoes glucuronidation to form the isomeric glucuronide (Gluc) conjugates N(2)-(β-d-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON(2)-Gluc) and O-(β-d-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN(2)-O-Gluc). AαC-HON(2)-Gluc is a stable metabolite but AαC-HN(2)-O-Gluc is a biologically reactive intermediate, which covalently adducts to DNA at levels that are 20-fold higher than HONH-AαC. We measured the rates of formation of AαC-HON(2)-Gluc and AαC-HN(2)-O-Gluc in human organs: highest activity occurred with liver and kidney microsomes, and lesser activity was found with colon and rectum microsomes. AαC-HN(2)-O-Gluc formation was largely diminished in liver and kidney microsomes, by niflumic acid, a selective inhibitor UGT1A9. In contrast, AαC-HON(2)-Gluc formation was less affected and other UGT contribute to N(2)-glucuronidation of HONH-AαC. UGT were reported to catalyze the formation of isomeric Gluc conjugates at the N(2) and N3 atoms of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (HONH-PhIP), the genotoxic metabolite of PhIP. However, we found that the N3-Gluc of HONH-PhIP also covalently bound to DNA at higher levels than HONH-PhIP. The product ion spectra of this Gluc conjugate acquired by ion trap mass spectrometry revealed that the Gluc moiety was linked to the oxygen atom of HONH-PhIP and not the N3 imidazole atom of the oxime tautomer of HONH-PhIP as was originally proposed. UGT1A9, an abundant UGT isoform expressed in human liver and kidney, preferentially forms the O-linked Gluc conjugates of HONH-AαC and HONH-PhIP as opposed to their detoxicated N(2)-Gluc isomers. The regioselective O-glucuronidation of HONH-AαC and HONH-PhIP, by UGT1A9, is a mechanism of bioactivation of these ubiquitous HAAs.
Collapse
Affiliation(s)
- Tingting Cai
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| | - Lihua Yao
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| |
Collapse
|
18
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Lacombe L, Fradet V, Lévesque É, Pouliot F, Larue H, Bergeron A, Hovington H, Caron A, Nguile-Makao M, Harvey M, Fradet Y, Guillemette C. Phase II Drug-Metabolizing Polymorphisms and Smoking Predict Recurrence of Non–Muscle-Invasive Bladder Cancer: A Gene–Smoking Interaction. Cancer Prev Res (Phila) 2015; 9:189-95. [DOI: 10.1158/1940-6207.capr-15-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
|
20
|
Beyerle J, Frei E, Stiborova M, Habermann N, Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev 2015; 47:199-221. [PMID: 25686853 DOI: 10.3109/03602532.2014.996649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In humans, the liver is generally considered to be the major organ contributing to drug metabolism, but studies during the last years have suggested an important role of the extra-hepatic drug metabolism. The gastrointestinal tract (GI-tract) is the major path of entry for a wide variety of compounds including food, and orally administered drugs, but also compounds - with neither nutrient nor other functional value - such as carcinogens. These compounds are metabolized by a large number of enzymes, including the cytochrome P450 (CYP), the glutathione S-transferase (GST) family, the uridine 5'-diphospho- glucuronosyltransferase (UDP-glucuronosyltransferase - UGT) superfamily, alcohol-metabolizing enzymes, sulfotransferases, etc. These enzymes can either inactivate carcinogens or, in some cases, generate reactive species with higher reactivity compared to the original compound. Most data in this field of research originate from animal or in vitro studies, wherein human studies are limited. Here, we review the human studies, in particular the studies on the phenotypic expression of these enzymes in the colon and rectum to get an impression of the actual enzyme levels in this primary organ of exposure. The aim of this review is to give a summary of currently available data on the relation between the CYP, the GST and the UGT biotransformation system and colorectal cancer obtained from clinical and epidemiological studies in humans.
Collapse
Affiliation(s)
- Jolantha Beyerle
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | | | | | | | | |
Collapse
|
21
|
Laverdière I, Flageole C, Audet-Walsh É, Caron P, Fradet Y, Lacombe L, Lévesque É, Guillemette C. The UGT1 locus is a determinant of prostate cancer recurrence after prostatectomy. Endocr Relat Cancer 2015; 22:77-85. [PMID: 25452636 DOI: 10.1530/erc-14-0423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prognostic significance of common deletions in uridine diphospho-glucuronosyltransferase 2B (UGT2B) genes encoding sex steroid metabolic enzymes has been recently recognized in localized prostate cancer (PCa) after radical prostatectomy (RP). However, the role of germline variations at the UGT1 locus, encoding half of all human UGTs and primarily involved in estrogen metabolism, remains unexplored. We investigated whether variants of UGT1 are potential prognostic markers. We studied 526 Caucasian men who underwent RP for clinically localized PCa. Genotypes of patients for 34 haplotype-tagged single-nucleotide polymorphisms (htSNPs) and 11 additional SNPs across the UGT1 locus previously reported to mark common variants including functional polymorphisms were determined. The risk of biochemical recurrence (BCR) was estimated using adjusted Cox proportional hazards regression and Kaplan-Meier analysis. We further investigated whether variants are associated with plasma hormone levels by mass spectrometry. In multivariable models, seven htSNPs were found to be significantly associated with BCR. A greater risk was revealed for four UGT1 intronic variants with hazard ratios (HRs) of 1.59-1.88 (P<0.002) for htSNPs in UGT1A10, UGT1A9, and UGT1A6. Conversely, decreased BCR was associated with three htSNPs in introns of UGT1A10 and UGT1A9 (HR=0.56-058; P≤0.01). An unfavorable UGT1 haplotype comprising all risk alleles, with a frequency of 14%, had a HR of 1.68 (95% CI=1.13-2.50; P=0.011). Significant alteration in circulating androsterone levels was associated with this haplotype, consistent with changes in hormonal exposure. This study provides the first evidence, to our knowledge, that germline polymorphisms of UGT1 are potential predictors of recurrence of PCa after prostatectomy.
Collapse
Affiliation(s)
- Isabelle Laverdière
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Christine Flageole
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Étienne Audet-Walsh
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Yves Fradet
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Louis Lacombe
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Éric Lévesque
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada Pharmacogenomics LaboratoryCentre Hospitalier Universitaire de Québec (CHU de Québec) Research Center and Faculty of Pharmacy, Laval University, R4720, 2705 Boulevard Laurier, Québec, Québec, Canada G1V 4G2CHU de Québec Research Center and Faculty of MedicineLaval University, Québec, Québec, CanadaCanada Research Chair in PharmacogenomicsQuébec, Québec, Canada
| |
Collapse
|
22
|
Andersen V, Vogel U. Interactions between meat intake and genetic variation in relation to colorectal cancer. GENES AND NUTRITION 2014; 10:448. [PMID: 25491747 PMCID: PMC4261072 DOI: 10.1007/s12263-014-0448-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
Abstract
Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of PubMed and Embase using “interaction”, “meat”, “polymorphisms”, and “colorectal cancer”, and data on meat–gene interactions were extracted. The studies were divided according to whether information on meat intake was collected prospectively or retrospectively. In prospective studies, interactions between meat intake and polymorphisms in PTGS2 (encoding COX-2), ABCB1, IL10, NFKB1, MSH3, XPC (Pint = 0.006, 0.01, 0.04, 0.03, 0.002, 0.01, respectively), but not IL1B, HMOX1, ABCC2, ABCG2, NR1I2 (encoding PXR), NR1H2 (encoding LXR), NAT1, NAT2, MSH6, or MLH1 in relation to CRC were found. Interaction between a polymorphism in XPC and meat was found in one prospective and one case–control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective cohorts with relevant meat exposure are warranted.
Collapse
Affiliation(s)
- Vibeke Andersen
- Organ Center, Hospital of Southern Jutland, Aabenraa, Denmark,
| | | |
Collapse
|
23
|
Angstadt AY, Hartman TJ, Lesko SM, Muscat JE, Zhu J, Gallagher CJ, Lazarus P. The effect of UGT1A and UGT2B polymorphisms on colorectal cancer risk: haplotype associations and gene–environment interactions. Genes Chromosomes Cancer 2014; 53:454-66. [PMID: 24822274 DOI: 10.1002/gcc.22157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) play an important role in the phase II metabolism of exogenous and endogenous compounds. As colorectal cancer (CRC) etiology is thought to involve the biotransformation of dietary factors, UGT polymorphisms may affect CRC risk by altering levels of exposure. Genotyping of over 1800 Caucasian subjects was completed to identify the role of genetic variation in nine UGT1A and five UGT2B genes on CRC risk. Unconditional logistic regression and haplotype analyses were conducted to identify associations with CRC risk and potential gene-environment interactions. UGT1A haplotype analysis found that the T-G haplotype in UGT1A10 exon 1 (block 2: rs17864678, rs10929251) decreased cancer risk for the colon [proximal (OR = 0.28, 95% CI = 0.11–0.69) and for the distal colon (OR = 0.32, 95% CI = 0.12–0.91)], and that the C-T-G haplotype in the 3′ region flanking the UGT1A shared exons (block 11: rs7578153, rs10203853, rs6728940) increased CRC risk in males (OR = 2.56, 95% CI = 1.10–5.95). A haplotype in UGT2B15 containing a functional variant (rs4148269, K523T) and an intronic SNP (rs6837575) was found to affect rectal cancer risk overall (OR = 2.57, 95% CI = 1.21–5.04) and in females (OR = 3.08, 95% CI = 1.08–8.74). An interaction was found between high NSAID use and the A-G-T haplotype (block 10: rs6717546, rs1500482, rs7586006) in the UGT1A shared exons that decreased CRC risk. This suggests that UGT genetic variation alters CRC risk differently by anatomical sub-site and gender and that polymorphisms in the UGT1A shared exons may have a regulatory effect on gene expression that allows for the protective effect of NSAIDs on CRC risk.
Collapse
|
24
|
Ning B, Su Z, Mei N, Hong H, Deng H, Shi L, Fuscoe JC, Tolleson WH. Toxicogenomics and cancer susceptibility: advances with next-generation sequencing. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:121-58. [PMID: 24875441 PMCID: PMC5712441 DOI: 10.1080/10590501.2014.907460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual's susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Zhenqiang Su
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nan Mei
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Helen Deng
- Arkansas Department of Health and Human Service, Little Rock, Arkansas, USA
| | - Leming Shi
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Pudong District, Shanghai, China
| | - James C. Fuscoe
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - William H. Tolleson
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
25
|
Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther 2013; 95:423-31. [PMID: 24253661 PMCID: PMC3961508 DOI: 10.1038/clpt.2013.229] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022]
Abstract
Since September 2010, over 10,000 patients have undergone preemptive, panel-based pharmacogenomic testing through the Vanderbilt Pharmacogenomic Resource for Enhanced Decisions in Care and Treatment (PREDICT) program. Analysis of the genetic data from the first 9,589 individuals reveals the frequency of genetic variants is concordant with published allele frequencies. Based on five currently implemented drug-genome interactions, the multiplexed test identified one or more actionable variants in 91% of the genotyped patients and in 96% of African-American patients. Using medication exposure data from electronic medical records, we compared a theoretical “reactive,” prescription-triggered, serial single-gene testing strategy to our preemptive, multiplexed genotyping approach. Reactive genotyping would have generated 14,656 genetic tests. These data highlight three advantages of preemptive genotyping: 1)the vast majority of patients carry at least one pharmacogene variant; 2)data are available at the point of care; and 3)there is a substantial reduction in testing burden compared to a reactive strategy.
Collapse
|
26
|
Helmus DS, Thompson CL, Zelenskiy S, Tucker TC, Li L. Red meat-derived heterocyclic amines increase risk of colon cancer: a population-based case-control study. Nutr Cancer 2013; 65:1141-50. [PMID: 24168237 DOI: 10.1080/01635581.2013.834945] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Formation of mutagenic heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) is one pathway believed to drive the association of colon cancer with meat consumption. Limited data exist on the associations of individual HCAs and PAHs in red or white meat with colon cancer. Analyzing data from a validated meat preparation questionnaire completed by 1062 incident colon cancer cases and 1645 population controls from an ongoing case-control study, risks of colon cancer were estimated using unconditional logistic regression models, comparing the fourth to the first quartile of mutagen estimates derived from a CHARRED based food frequency questionnaire. Total dietary intake of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) [adjusted odds ratio (aOR) = 1.87, 95% confidence interval (CI) = 1.44-2.44, P(trend) < 0.0001], 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) (aOR = 1.68, 95% CI = 1.29-2.17, P(trend) = 0.001) and meat-derived mutagenic activity (aOR = 1.77, 95% CI = 1.36-2.30, P(trend) < 0.0001) were statistically significantly associated with colon cancer risk. Meat type specific analyses revealed statistically significant associations for red meat-derived MeIQx, DiMeIQx, and mutagenic activity but not for the same mutagens derived from white meat. Our study adds evidence supporting red meat-derived, but not white-meat derived HCAs and PAHs, as an important pathway for environmental colon cancer carcinogenesis.
Collapse
Affiliation(s)
- Drew S Helmus
- a Department of Family Medicine and Community Health-Research Division and Department of Epidemiology and Biostatistics , Case Western Reserve University , Cleveland , Ohio , USA
| | | | | | | | | |
Collapse
|
27
|
Jansen RJ, Robinson DP, Stolzenberg-Solomon RZ, Bamlet WR, Tan X, Cunningham JM, Li Y, Rider DN, Oberg AL, Rabe KG, Anderson KE, Sinha R, Petersen GM. Polymorphisms in metabolism/antioxidant genes may mediate the effect of dietary intake on pancreatic cancer risk. Pancreas 2013; 42:1043-53. [PMID: 24051964 PMCID: PMC3779344 DOI: 10.1097/mpa.0b013e3182968e00] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES A source of variation for inconsistent dietary-pancreatic cancer associations may be individuals carrying constitutional metabolism/antioxidant gene variants that differentially benefit compared to homozygous individuals. Seventy-six tag single-nucleotide polymorphisms were genotyped in 13 candidate genes to test differential associations with pancreatic adenocarcinoma. METHODS A clinic-based case-control design was used to rapidly ascertain 251 cases and 970 frequency matched controls who provided blood samples and completed a 144-item food frequency questionnaire. Single-nucleotide polymorphisms were evaluated using a dominant genetic model and dietary categories split on controls' median intake. Logistic regression was used to calculate odds ratios and 95% confidence intervals, adjusted for potential confounders. RESULTS Significant increased associations (Bonferroni corrected P ≤ 0.0007) were observed for carriers of greater than or equal to 1 minor allele for rs3816257 (glucosidase, α; acid [GAA]) and lower intake of deep-yellow vegetables (1.90 [1.28-2.83]); and carriers of no minor allele for rs12807961 (catalase [CAT]) and high total grains intake (2.48 [1.50-4.09]), whereas those with greater than or equal to 1 minor allele had a decreasing slope (across grains). The reference group was no minor alleles with low dietary intake. CONCLUSIONS Interindividual variation in metabolism/antioxidant genes could interact with dietary intake to influence pancreatic cancer risk.
Collapse
Affiliation(s)
- Rick J Jansen
- From the Divisions of *Epidemiology, and †Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN; ‡Department of Epidemiology, National Institutes of Health, Bethesda, MD; §Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN; and ∥Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McCullough ML, Gapstur SM, Shah R, Jacobs EJ, Campbell PT. Association between red and processed meat intake and mortality among colorectal cancer survivors. J Clin Oncol 2013; 31:2773-82. [PMID: 23816965 DOI: 10.1200/jco.2013.49.1126] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Red and processed meat intake is convincingly associated with colorectal cancer (CRC) incidence, but its impact on prognosis after CRC diagnosis is unknown. We examined associations of red and processed meat consumption, self-reported before and after cancer diagnosis, with all-cause and cause-specific mortality among men and women with invasive, nonmetastatic CRC. PATIENTS AND METHODS Participants in the Cancer Prevention Study II Nutrition Cohort reported information on diet and other factors at baseline in 1992-1993, 1999, and 2003. Participants with a verified CRC diagnosis after baseline and up to June 30, 2009, were observed for mortality through December 31, 2010. RESULTS Among 2,315 participants diagnosed with CRC, 966 died during follow-up (413 from CRC and 176 from cardiovascular disease [CVD]). In multivariable-adjusted Cox proportional hazards regression models, red and processed meat intake before CRC diagnosis was associated with higher risks of death as a result of all causes (top v bottom quartile, relative risk [RR], 1.29; 95% CI, 1.05 to 1.59; Ptrend = .03) and from CVD (RR, 1.63; 95% CI, 1.00 to 2.67; Ptrend = .08) but not CRC (RR, 1.09; 95% CI, 0.79 to 1.51; Ptrend = 0.54). Although red and processed meat consumption after CRC diagnosis was not associated with mortality, survivors with consistently high (median or higher) intakes before and after diagnosis had a higher risk of CRC-specific mortality (RR, 1.79; 95% CI, 1.11 to 2.89) compared with those with consistently low intakes. CONCLUSION This study suggests that greater red and processed meat intake before diagnosis is associated with higher risk of death among patients with nonmetastatic CRC.
Collapse
Affiliation(s)
- Marjorie L McCullough
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303-1002, USA.
| | | | | | | | | |
Collapse
|
29
|
Tang D, Kryvenko ON, Wang Y, Trudeau S, Rundle A, Takahashi S, Shirai T, Rybicki BA. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in benign prostate and subsequent risk for prostate cancer. Int J Cancer 2013; 133:961-71. [PMID: 23400709 DOI: 10.1002/ijc.28092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/16/2013] [Indexed: 01/18/2023]
Abstract
Despite convincing evidence that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)--a heterocyclic amine generated by cooking meats at high temperatures--is carcinogenic in animal models, it remains unclear whether PhIP exposure leads to increased cancer risk in humans. PhIP-DNA adduct levels were measured in specimens from 534 prostate cancer case-control pairs nested within a historical cohort of men with histopathologically benign prostate specimens. We estimated the overall and race-stratified risk of subsequent prostate cancer associated with higher adduct levels. PhIP-DNA adduct levels in benign prostate were significantly higher in Whites than African Americans (0.274 optical density units (OD) ±0.059 vs. 0.256 OD ±0.054; p<0.0001). Prostate cancer risk for men in the highest quartile of PhIP-DNA adduct levels was modestly increased [odds ratio (OR) = 1.25; 95% confidence interval (CI) = 0.76-2.07]. In subset analyses, the highest risk estimates were observed in White patients diagnosed more than 4 years after cohort entry (OR = 2.74; 95% CI = 1.01-7.42) or under age 65 (OR = 2.80; 95% CI = 0.87-8.97). In Whites, cancer risk associated with high-grade prostatic intraepithelial neoplasia combined with elevated PhIP-DNA adduct levels (OR = 3.89; 95% CI = 1.56-9.73) was greater than risk associated with either factor alone. Overall, elevated levels of PhIP-DNA adducts do not significantly increase prostate cancer risk. However, our data show that White men have higher PhIP-DNA adduct levels in benign prostate tissue than African American men, and suggest that in certain subgroups of White men high PhIP-DNA adduct levels may predispose to an increased risk for prostate cancer.
Collapse
Affiliation(s)
- Deliang Tang
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jamin EL, Riu A, Douki T, Debrauwer L, Cravedi JP, Zalko D, Audebert M. Combined genotoxic effects of a polycyclic aromatic hydrocarbon (B(a)P) and an heterocyclic amine (PhIP) in relation to colorectal carcinogenesis. PLoS One 2013; 8:e58591. [PMID: 23484039 PMCID: PMC3590161 DOI: 10.1371/journal.pone.0058591] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/05/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line ApcMin/+, mimicking the early step of colorectal carcinogenesis, and control Apc+/+ cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on ApcMin/+ cells compared to Apc+/+. Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.
Collapse
Affiliation(s)
- Emilien L. Jamin
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Anne Riu
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Thierry Douki
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France
| | - Laurent Debrauwer
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Jean-Pierre Cravedi
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Daniel Zalko
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
| | - Marc Audebert
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR1331, Toulouse, France
- * E-mail:
| |
Collapse
|
31
|
Gilsing AMJ, Berndt SI, Ruder EH, Graubard BI, Ferrucci LM, Burdett L, Weissfeld JL, Cross AJ, Sinha R. Meat-related mutagen exposure, xenobiotic metabolizing gene polymorphisms and the risk of advanced colorectal adenoma and cancer. Carcinogenesis 2012; 33:1332-9. [PMID: 22552404 DOI: 10.1093/carcin/bgs158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meat mutagens, including heterocyclic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs) and N-nitroso compounds (NOCs), may be involved in colorectal carcinogenesis depending on their activation or detoxification by phase I and II xenobiotic metabolizing enzymes (XME). Using unconditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI), we examined the intake of five meat mutagens and >300 single nucleotide polymorphisms (SNPs) in 18 XME genes in relation to advanced colorectal adenoma (1205 cases and 1387 controls) and colorectal cancer (370 cases and 401 controls) within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Dietary intake of meat mutagens was assessed using a food frequency questionnaire with a detailed meat-cooking module. An interaction was observed between 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) intake and the NAT1 polymorphism rs6586714 in the adenoma study (P(interaction) = 0.001). Among individuals carrying a GG genotype, high MeIQx intake was associated with a 43% increased risk of adenoma (95% CI 1.11-1.85, P(trend) = 0.07), whereas the reverse was observed among carriers of the A variant (OR = 0.50, 95% CI 0.30-0.84, P(trend) = 0.01). In addition, we observed some suggestive (P < 0.05) modifying effects for SNPs in other XME genes (UGT1A, CYP2E1, EPHX1, AHR and GSTM3), but these were not significant after adjustment for multiple testing. This large and comprehensive study of XME genes, meat mutagens and the risk of colorectal tumours found that a NAT1 polymorphism modified the association between MeIQx intake and colorectal adenoma risk.
Collapse
Affiliation(s)
- Anne M J Gilsing
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hiljadnikova Bajro M, Josifovski T, Panovski M, Jankulovski N, Kapedanovska Nestorovska A, Matevska N, Petrusevska N, Dimovski AJ. Promoter length polymorphism in UGT1A1 and the risk of sporadic colorectal cancer. Cancer Genet 2012; 205:163-7. [DOI: 10.1016/j.cancergen.2012.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
33
|
Umamaheswaran G, Krishna Kumar D, Kayathiri D, Rajan S, Shewade DG, Dkhar SA, Manjunath S, Ushakiran P, Reneega G, Ritushree K, Adithan C. Inter and intra-ethnic differences in the distribution of the molecular variants of TPMT, UGT1A1 and MDR1 genes in the South Indian population. Mol Biol Rep 2012; 39:6343-51. [PMID: 22318545 DOI: 10.1007/s11033-012-1456-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/23/2012] [Indexed: 01/18/2023]
Abstract
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.
Collapse
Affiliation(s)
- Gurusamy Umamaheswaran
- ICMR Centre for Advance Research in Pharmacogenomics, Department of Pharmacology, JIPMER, Pondicherry, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
35
|
Bushey RT, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis. Pharmacogenet Genomics 2011; 21:55-65. [PMID: 21164388 PMCID: PMC3019304 DOI: 10.1097/fpc.0b013e328341db05] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine UGT2A1 expression in human tissues, determine its glucuronidation activity against tobacco carcinogens, and assess the potential functional role of UGT2A1 missense single nucleotide polymorphisms on UGT2A1 enzyme activity. METHODS Reverse transcription polymerase chain reaction and real time polymerase chain reaction were used to assess UGT2A1 gene expression in various human tissues. A glucuronidation assay measured by reverse phase ultra-performance liquid chromatography was used to determine UGT2A1 activity. RESULTS UGT2A1 was expressed in aerodigestive tract tissues including trachea, larynx, tonsil, lung, and colon; no expression was observed in breast, whole brain, pancreas, prostate, kidney, liver, or esophagus. UGT2A1 exhibited highest expression in the lung, followed by trachea >tonsil >larynx >colon >olfactory tissue. Cell homogenates prepared from wildtype UGT2A1(75Lys308Gly) overexpressing HEK293 cells showed significant glucuronidation activity against a variety of polycyclic aromatic hydrocarbons including, 1-hydroxy-benzo(a)pyrene, benzo(a)pyrene-7,8-diol, and 5-methylchrysene-1,2-diol. No activity was observed in UGT2A1 overexpressing cell homogenate against substrates that form N-glucuronides, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, or N-OH-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (N-OH PhIP). A significant (P<0.05) decrease (approximately 25%) in glucuronidation activity (Vmax/KM) was observed against all polycyclic aromatic hydrocarbons substrates for the UGT2A1(75Lys308Gly) variant compared with homogenates from wildtype UGT2A1(75Lys308Gly); no activity was observed for cell homogenates overexpressing the UGT2A1 variant for all substrates tested. CONCLUSION These data suggest that UGT2A1 is an important detoxification enzyme in the metabolism of polycyclic aromatic hydrocarbons within target tissues for tobacco carcinogens and functional polymorphisms in UGT2A1 may play a role in tobacco-related cancer risk.
Collapse
Affiliation(s)
- Ryan T. Bushey
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Gang Chen
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Andrea S. Blevins-Primeau
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jacek Krzeminski
- Chemical Carcinogenesis and Chemoprevention Program, Penn State Cancer Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Shantu Amin
- Chemical Carcinogenesis and Chemoprevention Program, Penn State Cancer Institute, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Philip Lazarus
- Molecular Epidemiology and Cancer Control Program, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X, Lu K. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 2010; 70:9765-76. [PMID: 21118967 DOI: 10.1158/0008-5472.can-10-0130] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNA) play important roles in tumorigenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the regulatory effect of miRNAs to their target genes, hence promoting tumorigenesis. This study analyzed 226 single nucleotide polymorphisms (SNP) in miRNA processing genes and miRNA binding sites in 339 ovarian cancer cases and 349 healthy controls to assess association with cancer risk, overall survival, and treatment response. Thirteen polymorphisms were found to have significant association with risk. The most significant were 2 linked SNPs (r(2) = 0.99), rs2740351 and rs7813 in GEMIN4 [odds ratio (OR) = 0.71; 95% confidence interval (CI), 0.57-0.87 and OR = 0.71; 95% CI, 0.57-0.88, respectively]. Unfavorable genotype analysis showed the cumulative effect of these 13 SNPs on risk (P for trend < 0.0001). Potential higher order gene-gene interactions were identified, which categorized patients into different risk groups according to their genotypic signatures. In the clinical outcome study, 24 SNPs exhibited significant association with overall survival and 17 SNPs with treatment response. Notably, patients carrying a rare homozygous genotype of rs1425486 in PDGFC had poorer overall survival [hazard ratio (HR) = 2.69; 95% CI, 1.67-4.33] and worse treatment response (OR = 3.38; 95% CI, 1.39-8.19), compared to carriers of common homozygous and heterozygous genotypes. Unfavorable genotype analyses also showed a strong gene-dosage effect with decreased survival and increased risk of treatment nonresponse in patients with greater number of unfavorable genotypes (P for trend < 0.0001). Taken together, miRNA-related genetic polymorphisms may impact ovarian cancer predisposition and clinical outcome both individually and jointly.
Collapse
Affiliation(s)
- Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ohnaka K, Kono S. Bilirubin, cardiovascular diseases and cancer: epidemiological perspectives. Expert Rev Endocrinol Metab 2010; 5:891-904. [PMID: 30780834 DOI: 10.1586/eem.10.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Owing to a potent antioxidant property of bilirubin, a growing interest has been drawn to the potential protective effects of bilirubin against oxidative stress-related diseases. This article evaluates associations of bilirubin with atherosclerotic diseases and cancer. Serum bilirubin has consistently been shown to be inversely associated with diverse atherosclerotic diseases, mostly among men in different populations. A limited number of prospective studies have shown a U-shaped or reversed J-shaped relationship between bilirubin and coronary heart disease in men and no evident association in women. Few studies have provided evidence supportive of a protective association between bilirubin and cancer risk. The findings on bilirubin-related genetic polymorphisms are inconsistent in relation to coronary heart disease and cancer.
Collapse
Affiliation(s)
- Keizo Ohnaka
- a Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suminori Kono
- a Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- b
| |
Collapse
|
38
|
Tabatabaei SM, Heyworth JS, Knuiman MW, Fritschi L. Dietary benzo[a]pyrene intake from meat and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2010; 19:3182-4. [PMID: 20962298 DOI: 10.1158/1055-9965.epi-10-1051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION One possible mechanism for the postulated link between high consumption of meat and colorectal cancer (CRC) is the content of benzo[a]pyrene (BaP) in meat. METHODS We investigated this association in a population-based case-control study in Western Australia (567 cases and 713 controls). Participants' self-report of meat consumption and lifestyle was used in conjunction with the CHARRED carcinogen database to estimate their BaP intake. RESULTS Dietary exposure to BaP from meat consumption was not associated with the risk of CRC. CONCLUSIONS Our findings do not support the hypothesis that BaP exposure from meat consumption is a risk factor for CRC. IMPACT STATEMENT: This large-scale case-control study used a detailed meat questionnaire in conjunction with the CHARRED database in a large population with high meat intake but was unable to find any association between intake of BaP and colorectal cancer.
Collapse
Affiliation(s)
- Seyed Mehdi Tabatabaei
- School of Population Health, The University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | | |
Collapse
|
39
|
Ramesh A, Archibong AE, Niaz MS. Ovarian susceptibility to benzo[a]pyrene: tissue burden of metabolites and DNA adducts in F-344 rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1611-1625. [PMID: 20967675 PMCID: PMC3077542 DOI: 10.1080/15287394.2010.514225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to environmental toxicants has been implicated as one of the causative factors for infertility in mammals. The objective of this study was to determine the amount of ingested benzo[a]pyrene (BaP), an environmental toxicant that reaches the reproductive tissues (internal dose) subsequent to a single acute exposure. Toward this end, the concentrations of BaP reactive metabolites and BaP-DNA adducts were measured throughout the course of BaP's residence in the body. Ten-week-old female Fischer-344 rats weighing approximately 220 g were administered 5 mg BaP/kg body weight orally. 1, 7, 14, 2,1 and 28 d post BaP exposure, BaP parent compound and metabolites from plasma, ovaries, and liver tissues were extracted using liquid-liquid extraction. The extracts were analyzed by reverse-phase highperformance liquid chromatography (HPLC). DNA was isolated and analyzed for BaP-induced DNA adducts by (32)P-postlabeling method. The BaP total metabolite concentrations in plasma, ovaries, and liver showed a gradual decrease from d 1 to 28 post BaP administration. The BaP-DNA adducts concentrations in ovaries and liver tissues from the treatment group demonstrated a trend similar to that observed for metabolites. Ovaries showed greater concentrations of DNA adducts compared to liver. However, with an increase in time post cessation of exposure, the adduct concentrations in liver tissue started declining rapidly, from d 1 to 28. For ovaries, the adduct concentrations demonstrated a significant decline from d 1 to 7 and a gradual fall thereafter. A concordance between BaP reactive metabolite levels and adduct concentrations indicates that the bioavailability of reactive metabolites determines the binding with DNA and consequently the formation and persistence of adducts in an acute exposure regimen.
Collapse
Affiliation(s)
- Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | |
Collapse
|
40
|
Romanowski T, Sikorska K, Bielawski KP. UGT1A1 gene polymorphism as a potential factor inducing iron overload in the pathogenesis of type 1 hereditary hemochromatosis. Hepatol Res 2009; 39:469-78. [PMID: 19207584 DOI: 10.1111/j.1872-034x.2008.00487.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim Hereditary hemochromatosis is a common genetic disorder characterized by iron overload and subsequent organ damage. It is caused in most cases by HFE gene mutations which penetrance can be affected by many factors. The aim of this study was to establish the role of UGT1A1 gene polymorphism and serum bilirubin concentration in the pathogenesis of hereditary hemochromatosis. Methods Biochemical, histopathological and genetic data indicating iron excess and serum total bilirubin concentration were determined in 32 patients with the type 1 hereditary hemochromatosis. Fluorescent molecular probes assays were used for genotyping of UGT1A1*28 and UGT1A1*60 mutations in these individuals. Results High incidence and a significant correlation of UGT1A1 gene mutations with increased serum bilirubin level and lower grades of liver tissue inflammatory activity were observed in study participants. UGT1A1*28 and UGT1A1*60 mutations were strongly linked together. Two of the subjects presented very rare genotypes of UGT1A1 gene: (TA)(5/7) and c.-64G>C heterozygotes. Conclusions UGT1A1 gene polymorphism and as its consequence of high serum bilirubin level may promote iron accumulation in hemochromatosis patients by reducing the activity of inflammation. We proposed a possible mechanism of this interaction.
Collapse
Affiliation(s)
- Tomasz Romanowski
- Molecular Diagnostics Division, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland
| | | | | |
Collapse
|
41
|
Saracino MR, Bigler J, Schwarz Y, Chang JL, Li S, Li L, White E, Potter JD, Lampe JW. Citrus fruit intake is associated with lower serum bilirubin concentration among women with the UGT1A1*28 polymorphism. J Nutr 2009; 139:555-60. [PMID: 19141701 PMCID: PMC2646224 DOI: 10.3945/jn.108.097279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UDP-glucuronosyltransferase (UGT) 1A1 glucuronidates bilirubin, estrogens, and xenobiotic compounds. The UGT1A1*28 polymorphism results in lower promoter activity due to 7 thymine-adenine (TA) repeats rather than the more common 6 TA repeats. Previously, we showed that serum bilirubin, a marker of UGT1A1 activity, was lower among individuals homozygous for the UGT1A1*28 polymorphism (7/7) when randomized to a high fruit and vegetable (F&V) diet, whereas there was no effect in individuals with the wild-type (6/6) and heterozygous (6/7) genotypes. Our objective here was to determine if we could detect genotype x diet interactions on bilirubin concentrations in an observational study. Healthy nonsmoking men (n = 146) and women (n = 147), recruited from the Seattle area, provided blood samples for genotyping and bilirubin measurements. We used multiple linear regression to assess the relationships among UGT1A1 genotype, bilirubin concentrations, and consumption of specific F&V [cruciferous vegetables, citrus fruits, and soy foods (n = 268)] based on FFQ and F&V from 6 botanical families [Cruciferae, Rosaceae, Rutaceae, Umbelliferae, Solanaceae, and Leguminosae (n = 261)] based on 3-d food records. We observed a significant interaction of UGT1A1 genotype and citrus consumption among women. Women with the 7/7 genotype who consumed > or = 0.5 daily servings of citrus fruit or foods from the Rutaceae botanical family had approximately 30% lower serum bilirubin than those with the same genotype who consumed less, whereas 6/6 and 6/7 genotypes did not differ by consumption (P for interaction = 0.006 and 0.03, respectively). These results suggest that citrus consumption may increase UGT1A1 activity among women with the 7/7 genotype.
Collapse
Affiliation(s)
- Misty R. Saracino
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Jeannette Bigler
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Yvonne Schwarz
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Jyh-Lurn Chang
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Shiuying Li
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Lin Li
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Emily White
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - John D. Potter
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 and Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|