1
|
Wang R, Zhang J, Cui X, Wang S, Chen T, Niu Y, Du X, Kong J, Wang L, Jiang Y. Multimolecular characteristics and role of BRCA1 interacting protein C-terminal helicase 1 (BRIP1) in human tumors: a pan-cancer analysis. World J Surg Oncol 2023; 21:91. [PMID: 36907870 PMCID: PMC10010046 DOI: 10.1186/s12957-022-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/09/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND The aberrant expression of BRIP1 was associated with several cancers; however, the panoramic picture of BRIP1 in human tumors remains unclear. This study aims to explore the pan-cancerous picture of the expression of BRIP1 across 33 human cancers. METHODS Based on the data from TCGA and GTEx, a series of bioinformatic analyses were applied to systematically explore the genetic landscape and biologic function of BRIP1 in 33 human tumors. RESULTS We observed prognosis-related differential BRIP1 expressions between various carcinomas and the corresponding normal tissues. "Basal transcription factors," "homologous recombination," "nucleotide excision repair," and DNA metabolism pathways may play a role in the functional mechanisms of BRIP1. Patients with uterine corpus endometrial carcinoma presented with the highest alteration frequency of BRIP1 (nearly 10%). Single-nucleotide and copy number variations of BRIP1 were noticed in multiple cancers, and the expression of BRIP1 is significantly regulated by copy number variation in breast invasive carcinoma and lung squamous cell carcinoma. BRIP1 expression is negatively correlated with the DNA methylation levels in many tumors and is associated with the activation of apoptosis, cell cycle, DNA damage response, and inhibition of hormone ER and RNS/MARK signaling pathways. Moreover, a positive correlation was observed between BRIP1 expression and the immune infiltration levels of cancer-associated fibroblasts and CD8+ T cells in lung adenocarcinoma. CONCLUSION Our pan-cancer analysis of BRIP1 provides a valuable resource for understanding the multimolecular characteristics and biological function of BRIP1 across human cancers.
Collapse
Affiliation(s)
- Ruohuang Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Xin Cui
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, 266000, China
| | - Shun Wang
- The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Yanfang Niu
- Department of Clinical Laboratory, Yuncheng Central Hospital, Yuncheng, Shanxi, 044000, China
| | - Xiaoyun Du
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Jingwen Kong
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Lin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Hou K, Yu Y, Li D, Zhang Y, Zhang K, Tong J, Yang K, Jia S. Alternative Lengthening of Telomeres and Mediated Telomere Synthesis. Cancers (Basel) 2022; 14:cancers14092194. [PMID: 35565323 PMCID: PMC9105334 DOI: 10.3390/cancers14092194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Alternative lengthing of telomere (ALT) is an important mechanism for maintaining telomere length and cell proliferation in telomerase-negative tumor cells. However, the molecular mechanism of ALT is still poorly understood. ALT occurs in a wide range of tumor types and usually associated with a worse clinical consequence. Here, we review the recent findings of ALT mechanisms, which promise ALT could be a valuable drug target for clinical telomerase-negative tumor treatment. Abstract Telomeres are DNA–protein complexes that protect eukaryotic chromosome ends from being erroneously repaired by the DNA damage repair system, and the length of telomeres indicates the replicative potential of the cell. Telomeres shorten during each division of the cell, resulting in telomeric damage and replicative senescence. Tumor cells tend to ensure cell proliferation potential and genomic stability by activating telomere maintenance mechanisms (TMMs) for telomere lengthening. The alternative lengthening of telomeres (ALT) pathway is the most frequently activated TMM in tumors of mesenchymal and neuroepithelial origin, and ALT also frequently occurs during experimental cellular immortalization of mesenchymal cells. ALT is a process that relies on homologous recombination (HR) to elongate telomeres. However, some processes in the ALT mechanism remain poorly understood. Here, we review the most recent understanding of ALT mechanisms and processes, which may help us to better understand how the ALT pathway is activated in cancer cells and determine the potential therapeutic targets in ALT pathway-stabilized tumors.
Collapse
Affiliation(s)
- Kailong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China;
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
- First People’s Hospital of Yunnan Province, 157 Jinbi Road, Kunming 650032, China
| | - Yuyang Yu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Duda Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Yanduo Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Ke Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Jinkai Tong
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
| | - Kunxian Yang
- First People’s Hospital of Yunnan Province, 157 Jinbi Road, Kunming 650032, China
- Correspondence: (K.Y.); (S.J.)
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, 727 Jing Ming Nan Road, Kunming 650500, China; (Y.Y.); (D.L.); (Y.Z.); (K.Z.); (J.T.)
- Correspondence: (K.Y.); (S.J.)
| |
Collapse
|
3
|
Martín-Morales L, Garre P, Lorca V, Cazorla M, Llovet P, Bando I, García-Barberan V, González-Morales ML, Esteban-Jurado C, de la Hoya M, Castellví-Bel S, Caldés T. BRIP1, a Gene Potentially Implicated in Familial Colorectal Cancer Type X. Cancer Prev Res (Phila) 2020; 14:185-194. [PMID: 33115781 DOI: 10.1158/1940-6207.capr-20-0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Familial colorectal cancer Type X (FCCTX) comprises a heterogeneous group of families with an increased risk of developing colorectal cancer and other related tumors, but with mismatch repair-proficient, microsatellite-stable (MSS) tumors. Unfortunately, the genetic basis underlying their cancer predisposition remains unknown. Although pathogenic germline variants in BRIP1 increase the risk of developing hereditary ovarian cancer, the involvement of BRIP1 in hereditary colorectal cancer is still not well known. In order to identify new BRIP1 variants associated with inherited colorectal cancer, affected and nonaffected individuals from 18 FCCTX or high-risk MSS colorectal cancer families were evaluated by whole-exome sequencing, and another 62 colorectal cancer patients from FCCTX or high-risk MSS colorectal cancer families were screened by a next-generation sequencing (NGS) multigene panel. The families were recruited at the Genetic Counseling Unit of Hospital Clínico San Carlos of Madrid. A total of three different BRIP1 mutations in three unrelated families were identified. Among them, there were two frameshift variants [c.1702_1703del, p.(Asn568TrpfsTer9) and c.903del, p.(Leu301PhefsTer2)] that result in the truncation of the protein and are thus classified as pathogenic (class 5). The remaining was a missense variant [c.2220G>T, p.(Gln740His)] considered a variant of uncertain significance (class 3). The segregation and loss-of-heterozygosity studies provide evidence linking the two BRIP1 frameshift variants to colorectal cancer risk, with suggestive but not definitive evidence that the third variant may be benign. The results here presented suggest that germline BRIP1 pathogenic variants could be associated with hereditary colorectal cancer predisposition.Prevention Relevance: We suggest that BRIP1 pathogenic germline variants may have a causal role in CRC as moderate cancer susceptibility alleles and be associated with hereditary CRC predisposition. A better understanding of hereditary CRC may provide important clues to disease predisposition and could contribute to molecular diagnostics, improved risk stratification, and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lorena Martín-Morales
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Marta Cazorla
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Patricia Llovet
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Inmaculada Bando
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Vanesa García-Barberan
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | | | - Clara Esteban-Jurado
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain.
| |
Collapse
|
4
|
Wappenschmidt B, Hauke J, Faust U, Niederacher D, Wiesmüller L, Schmidt G, Groß E, Gehrig A, Sutter C, Ramser J, Rump A, Arnold N, Meindl A. Criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for the Classification of Germline Sequence Variants in Risk Genes for Hereditary Breast and Ovarian Cancer. Geburtshilfe Frauenheilkd 2020; 80:410-429. [PMID: 32322110 PMCID: PMC7174002 DOI: 10.1055/a-1110-0909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
More than ten years ago, the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) set up a panel of experts (VUS Task Force) which was tasked with reviewing the classifications of genetic variants reported by individual centres of the GC-HBOC to the central database in Leipzig and reclassifying them, where necessary, based on the most recent data. When it evaluates variants, the VUS Task Force must arrive at a consensus. The resulting classifications are recorded in a central database where they serve as a basis for ensuring the consistent evaluation of previously known and newly identified variants in the different centres of the GC-HBOC. The standardised VUS evaluation by the VUS Task Force is a key element of the recall system which has also been set up by the GC-HBOC. The system will be used to pass on information to families monitored and managed by GC-HBOC centres in the event that previously classified variants are reclassified based on new information. The evaluation algorithm of the VUS Task Force was compiled using internationally established assessment methods (IARC, ACMG, ENIGMA) and is presented here together with the underlying evaluation criteria used to arrive at the classification decision using a flow chart. In addition, the characteristics and special features of specific individual risk genes associated with breast and/or ovarian cancer are discussed in separate subsections. The URLs of relevant databases have also been included together with extensive literature references to provide additional information and cover the scope and dynamism of the current state of knowledge on the evaluation of genetic variants. In future, if criteria are updated based on new information, the update will be published on the website of the GC-HBOC (
https://www.konsortium-familiaerer-brustkrebs.de/
).
Collapse
Affiliation(s)
- Barbara Wappenschmidt
- Zentrum familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Köln, Germany
| | - Jan Hauke
- Zentrum familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Köln, Germany
| | - Ulrike Faust
- Institut für Medizinische Genetik und Angewandte Genomik, Universität Tübingen, Tübingen, Germany
| | - Dieter Niederacher
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Lisa Wiesmüller
- Frauenklinik, Sektion Gynäkologische Onkologie, Uniklinik Ulm, Ulm, Germany
| | - Gunnar Schmidt
- Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Evi Groß
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, Campus Großhadern, München, Germany
| | - Andrea Gehrig
- Institut für Humangenetik, Universität Würzburg, Würzburg, Germany
| | - Christian Sutter
- Institut für Humangenetik, Universität Heidelberg, Heidelberg, Germany
| | - Juliane Ramser
- Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, München, Germany
| | - Andreas Rump
- Institut für klinische Genetik, Technische Universität Dresden, Dresden, Germany
| | - Norbert Arnold
- Universitätsklinikum Kiel, Klinik für Gynäkologie und Geburtshilfe, Kiel, Germany.,Institut für Klinische Molekularbiologie, Universitätsklinikum Kiel, Kiel, Germany
| | - Alfons Meindl
- Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Klinikum der Universität München, Campus Großhadern, München, Germany.,Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, München, Germany
| |
Collapse
|
5
|
Wang Y, Wang J, Long F, Wang N, Zhang B, Han H, Wang Y. Correlation of FANCM expression with clinical factors in luminal B breast cancer. Breast Cancer 2018; 25:431-437. [PMID: 29388117 DOI: 10.1007/s12282-018-0841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND The genotype of Fanconi Anemia complementation group M (FANCM) was previously found to be associated with breast cancer risk in several populations. Here, we studied the expression of FANCM and its correlation with clinical characteristics in Chinese patients with breast cancer. METHODS We performed an immunohistochemical study of FANCM protein in clinical breast cancer tissues from 310 patients along with 44 adjacent tissues. RESULTS FANCM protein level is lower in triple-negative breast cancer tissues than in other subtypes (P = 0.008). In addition, high FANCM expression correlated with pathology type IDC (P = 0.040), estrogen receptor positive (P < 0.001), progesterone receptor positive (P = 0.001), and low Ki-67 status (P = 0.003). Multivariate analysis revealed that FANCM status was an independent prognostic factor for overall survival (P = 0.017) in luminal B breast cancer. CONCLUSIONS FANCM levels are significantly associated with different subtypes of human breast cancer. Specifically, FANCM could play a role in the progression of luminal B breast cancer.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junnan Wang
- Cadet Brigade, Second Military Medical University, Shanghai, China
| | - Fei Long
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ning Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bingbing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Huan Han
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
7
|
Oussalah A, Avogbe PH, Guyot E, Chery C, Guéant-Rodriguez RM, Ganne-Carrié N, Cobat A, Moradpour D, Nalpas B, Negro F, Poynard T, Pol S, Bochud PY, Abel L, Jeulin H, Schvoerer E, Chabi N, Amouzou E, Sanni A, Barraud H, Rouyer P, Josse T, Goffinet L, Jouve JL, Minello A, Bonithon-Kopp C, Thiefin G, Di Martino V, Doffoël M, Richou C, Raab JJ, Hillon P, Bronowicki JP, Guéant JL. BRIP1 coding variants are associated with a high risk of hepatocellular carcinoma occurrence in patients with HCV- or HBV-related liver disease. Oncotarget 2016; 8:62842-62857. [PMID: 28968953 PMCID: PMC5609885 DOI: 10.18632/oncotarget.11327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms of hepatocellular carcinoma (HCC) carcinogenesis are still not fully understood. DNA repair defects may influence HCC risk. The aim of the study was to look for potential genetic variants of DNA repair genes associated with HCC risk among patients with alcohol- or viral-induced liver disease. We performed four case-control studies on 2,006 European- (Derivation#1 and #2 studies) and African-ancestry (Validation#1 and #2 studies) patients originating from several cohorts in order to assess the association between genetic variants on DNA repair genes and HCC risk using a custom array encompassing 94 genes. In the Derivation#1 study, the BRIP1 locus reached array-wide significance (Chi-squared SV-Perm, P=5.00×10-4) among the 253 haplotype blocks tested for their association with HCC risk, in patients with viral cirrhosis but not among those with alcoholic cirrhosis. The BRIP1 haplotype block included three exonic variants (rs4986763, rs4986764, rs4986765). The BRIP1 'AAA' haplotype was significantly associated with an increased HCC risk [odds ratio (OR), 2.01 (1.19-3.39); false discovery rate (FDR)-P=1.31×10-2]. In the Derivation#2 study, results were confirmed for the BRIP1 'GGG' haplotype [OR, 0.53 (0.36-0.79); FDR-P=3.90×10-3]. In both Validation#1 and #2 studies, BRIP1 'AAA' haplotype was significantly associated with an increased risk of HCC [OR, 1.71 (1.09-2.68); FDR-P=7.30×10-2; and OR, 6.45 (4.17-9.99); FDR-P=2.33×10-19, respectively]. Association between the BRIP1 locus and HCC risk suggests that impaired DNA mismatch repair might play a role in liver carcinogenesis, among patients with HCV- or HBV-related liver disease.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Patrice Hodonou Avogbe
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Erwan Guyot
- Biochemistry Unit, Jean Verdier Hospital, APHP, Bondy, France and University Paris 13-UFR SMBH/INSERM, Bobigny, France
| | - Céline Chery
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Nathalie Ganne-Carrié
- Liver Unit and Liver biobank CRB des Hôpitaux Universitaires Paris-Seine-Saint-Denis BB-0033-00027, Jean Verdier Hospital, APHP, Bondy, France.,INSERM, U1162, Génomique fonctionnelle des Tumeurs solides, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, University Hospital and University of Lausanne, Switzerland
| | - Bertrand Nalpas
- Département d'Hépatologie, Hôpital Cochin (AP-HP), Université Paris Descartes, Paris, France
| | - Francesco Negro
- Division of Clinical Pathology and Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland
| | - Thierry Poynard
- Université Pierre et Marie Curie, Service d'Hépato-gastroentérologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Stanislas Pol
- Département d'Hépatologie, Hôpital Cochin (AP-HP), Université Paris Descartes, Paris, France.,INSERM UMS20, Institut Pasteur, Paris, France
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Switzerland
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, NY, USA
| | - Hélène Jeulin
- Virology Laboratory, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Virology Laboratory, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Nicodème Chabi
- Laboratory of Biochemistry and Molecular Biology, University of Cotonou, Cotonou, Benin
| | - Emile Amouzou
- Laboratory of Biochemistry and Nutrition, Lomé, University of Kara, Togo
| | - Ambaliou Sanni
- Laboratory of Biochemistry and Molecular Biology, University of Cotonou, Cotonou, Benin
| | - Hélène Barraud
- Department of Hepato-Gastroenterology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Pierre Rouyer
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Thomas Josse
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Laetitia Goffinet
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Jouve
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Anne Minello
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Claire Bonithon-Kopp
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Gérard Thiefin
- Department of Hepato-Gastroenterology, Reims University Hospital, Reims, France
| | - Vincent Di Martino
- Department of Hepatology, University Hospital of Besançon, Besançon, France
| | - Michel Doffoël
- Department of Hepato-Gastroenterology, University Hospital of Strasbourg, Strasbourg, France
| | - Carine Richou
- Department of Hepatology, University Hospital of Besançon, Besançon, France
| | | | - Patrick Hillon
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Jean-Pierre Bronowicki
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Hepato-Gastroenterology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
8
|
Suhasini AN, Sommers JA, Muniandy PA, Coulombe Y, Cantor SB, Masson JY, Seidman MM, Brosh RM. Fanconi anemia group J helicase and MRE11 nuclease interact to facilitate the DNA damage response. Mol Cell Biol 2013; 33:2212-27. [PMID: 23530059 PMCID: PMC3648079 DOI: 10.1128/mcb.01256-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/14/2013] [Indexed: 01/31/2023] Open
Abstract
FANCJ mutations are linked to Fanconi anemia (FA) and increase breast cancer risk. FANCJ encodes a DNA helicase implicated in homologous recombination (HR) repair of double-strand breaks (DSBs) and interstrand cross-links (ICLs), but its mechanism of action is not well understood. Here we show with live-cell imaging that FANCJ recruitment to laser-induced DSBs but not psoralen-induced ICLs is dependent on nuclease-active MRE11. FANCJ interacts directly with MRE11 and inhibits its exonuclease activity in a specific manner, suggesting that FANCJ regulates the MRE11 nuclease to facilitate DSB processing and appropriate end resection. Cells deficient in FANCJ and MRE11 show increased ionizing radiation (IR) resistance, reduced numbers of γH2AX and RAD51 foci, and elevated numbers of DNA-dependent protein kinase catalytic subunit foci, suggesting that HR is compromised and the nonhomologous end-joining (NHEJ) pathway is elicited to help cells cope with IR-induced strand breaks. Interplay between FANCJ and MRE11 ensures a normal response to IR-induced DSBs, whereas FANCJ involvement in ICL repair is regulated by MLH1 and the FA pathway. Our findings are discussed in light of the current model for HR repair.
Collapse
Affiliation(s)
- Avvaru N. Suhasini
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Parameswary A. Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Yan Coulombe
- Genome Stability Laboratory, Laval University Cancer Research Center, Quebec, Canada
| | - Sharon B. Cantor
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, Laval University Cancer Research Center, Quebec, Canada
| | - Michael M. Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, Maryland, USA
| |
Collapse
|
9
|
The ASB2β Ubiquitin-interacting motif is involved in its monoubiquitination. Biochem Biophys Res Commun 2012; 420:487-91. [DOI: 10.1016/j.bbrc.2012.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
|
10
|
Wu Y, Brosh RM. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res 2012; 40:4247-60. [PMID: 22287629 PMCID: PMC3378879 DOI: 10.1093/nar/gks039] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Conserved Iron-Sulfur (Fe-S) clusters are found in a growing family of metalloproteins that are implicated in prokaryotic and eukaryotic DNA replication and repair. Among these are DNA helicase and helicase-nuclease enzymes that preserve chromosomal stability and are genetically linked to diseases characterized by DNA repair defects and/or a poor response to replication stress. Insight to the structural and functional importance of the conserved Fe-S domain in DNA helicases has been gleaned from structural studies of the purified proteins and characterization of Fe-S cluster site-directed mutants. In this review, we will provide a current perspective of what is known about the Fe-S cluster helicases, with an emphasis on how the conserved redox active domain may facilitate mechanistic aspects of helicase function. We will discuss testable models for how the conserved Fe-S cluster might operate in helicase and helicase-nuclease enzymes to conduct their specialized functions that help to preserve the integrity of the genome.
Collapse
Affiliation(s)
- Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| | | |
Collapse
|
11
|
Somyajit K, Subramanya S, Nagaraju G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 2011; 287:3366-80. [PMID: 22167183 DOI: 10.1074/jbc.m111.311241] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
12
|
Valeri A, Martínez S, Casado JA, Bueren JA. Fanconi anaemia: from a monogenic disease to sporadic cancer. Clin Transl Oncol 2011; 13:215-21. [PMID: 21493181 DOI: 10.1007/s12094-011-0645-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The dissection of the molecular pathways participating in genetic instability disorders has rendered invaluable information about the mechanisms of cancer pathogenesis and progression, and is offering a unique opportunity to establish targeted anticancer therapies. Fanconi anaemia (FA) is a paradigm of cancer-prone inherited monogenic disorders. Moreover, accumulated evidence indicates that genetic and epigenetic alterations in FA genes can also play an important role in sporadic cancer in the general population. Here, we summarise current progress in the understanding of the molecular biology of FA and review the principal mechanisms accounting for a disrupted FA pathway in sporadic cancer. Additionally, we discuss the impact of these findings in the development of new anticancer therapies, particularly with DNA interstrand crosslinkers and with new inhibitors of the FA and/or alternative DNA repair pathways.
Collapse
Affiliation(s)
- Antonio Valeri
- Hematopoiesis and Gene Therapy Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Meier D, Schindler D. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements. PLoS One 2011; 6:e22911. [PMID: 21826217 PMCID: PMC3149625 DOI: 10.1371/journal.pone.0022911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.
Collapse
Affiliation(s)
- Daniel Meier
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany.
| | | |
Collapse
|
14
|
Wang LC, Gautier J. The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Crit Rev Biochem Mol Biol 2011; 45:424-39. [PMID: 20807115 DOI: 10.3109/10409238.2010.502166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.
Collapse
Affiliation(s)
- Lily C Wang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Tumini E, Plevani P, Muzi-Falconi M, Marini F. Physical and functional crosstalk between Fanconi anemia core components and the GINS replication complex. DNA Repair (Amst) 2010; 10:149-58. [PMID: 21109493 DOI: 10.1016/j.dnarep.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022]
Abstract
Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure, increased cancer risk and hypersensitivity to DNA cross-linking agents, implying a role for this pathway in the maintenance of genomic stability. The central player of the FA pathway is the multi-subunit E3 ubiquitin ligase complex activated through a replication- and DNA damage-dependent mechanism. A consequence of the activation of the complex is the monoubiquitylation of FANCD2 and FANCI, late term effectors in the maintenance of genome integrity. The details regarding the coordination of the FA-dependent response and the DNA replication process are still mostly unknown. We found, by yeast two-hybrid assay and co-immunoprecipitation in human cells, that the core complex subunit FANCF physically interacts with PSF2, a member of the GINS complex essential for both the initiation and elongation steps of DNA replication. In HeLa cells depleted for PSF2, we observed a decreased binding to chromatin of the FA core complex, suggesting that the GINS complex may have a role in either loading or stabilizing the FA core complex onto chromatin. Consistently, GINS and core complex bind chromatin contemporarily upon origin firing and PSF2 depletion sensitizes cells to DNA cross-linking agents. However, depletion of PSF2 is not sufficient to reduce monoubiquitylation of FANCD2 or its localization to nuclear foci following DNA damage. Our results suggest a novel crosstalk between DNA replication and the FA pathway.
Collapse
Affiliation(s)
- Emanuela Tumini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
16
|
Somyajit K, Subramanya S, Nagaraju G. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 2010; 31:2031-8. [PMID: 20952512 PMCID: PMC2994284 DOI: 10.1093/carcin/bgq210] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Germline mutations in many of the genes that are involved in homologous recombination (HR)-mediated DNA double-strand break repair (DSBR) are associated with various human genetic disorders and cancer. RAD51 and RAD51 paralogs are important for HR and in the maintenance of genome stability. Despite the identification of five RAD51 paralogs over a decade ago, the molecular mechanism(s) by which RAD51 paralogs regulate HR and genome maintenance remains obscure. In addition to the known roles of RAD51C in early and late stages of HR, it also contributes to activation of the checkpoint kinase CHK2. One recent study identifies biallelic mutation in RAD51C leading to Fanconi anemia-like disorder. Whereas a second study reports monoallelic mutation in RAD51C associated with increased risk of breast and ovarian cancer. These reports show RAD51C is a cancer susceptibility gene. In this review, we focus on describing the functions of RAD51C in HR, DNA damage signaling and as a tumor suppressor with an emphasis on the new roles of RAD51C unveiled by these reports.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
17
|
Kee Y, D'Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 2010; 24:1680-94. [PMID: 20713514 DOI: 10.1101/gad.1955310] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studying rare human genetic diseases often leads to a better understanding of normal cellular functions. Fanconi anemia (FA), for example, has elucidated a novel DNA repair mechanism required for maintaining genomic stability and preventing cancer. The FA pathway, an essential tumor-suppressive pathway, is required for protecting the human genome from a specific type of DNA damage; namely, DNA interstrand cross-links (ICLs). In this review, we discuss the recent progress in the study of the FA pathway, such as the identification of new FANCM-binding partners and the identification of RAD51C and FAN1 (Fanconi-associated nuclease 1) as new FA pathway-related proteins. We also focus on the role of the FA pathway as a potential regulator of DNA repair choices in response to double-strand breaks, and its novel functions during the mitotic phase of the cell cycle.
Collapse
Affiliation(s)
- Younghoon Kee
- Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood 2010; 116:3780-91. [PMID: 20639400 DOI: 10.1182/blood-2009-11-256016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly conserved cysteine of the iron-sulfur domain. Given the genetic linkage of the FANCJ-A349P allele to FA, we investigated the effect of this particular mutation on the biochemical and cellular functions of the FANCJ protein. Purified recombinant FANCJ-A349P protein had reduced iron and was defective in coupling adenosine triphosphate (ATP) hydrolysis and translocase activity to unwinding forked duplex or G-quadruplex DNA substrates or disrupting protein-DNA complexes. The FANCJ-A349P allele failed to rescue cisplatin or telomestatin sensitivity of a FA-J null cell line as detected by cell survival or γ-H2AX foci formation. Furthermore, expression of FANCJ-A349P in a wild-type background exerted a dominant-negative effect, indicating that the mutant protein interferes with normal DNA metabolism. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind DNA or destabilize protein bound to DNA is required for its role in DNA repair.
Collapse
|
19
|
Wilson JB, Blom E, Cunningham R, Xiao Y, Kupfer GM, Jones NJ. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance. Mutat Res 2010; 689:12-20. [PMID: 20450923 DOI: 10.1016/j.mrfmmm.2010.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/02/2010] [Accepted: 04/28/2010] [Indexed: 11/26/2022]
Abstract
The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes including the FA core complex and the D1-D2-G-X3 complex.
Collapse
Affiliation(s)
- James B Wilson
- Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
20
|
Zhi G, Chen X, Newcomb W, Brown J, Semmes OJ, Kupfer GM. Purification of FANCD2 sub-complexes. Br J Haematol 2010; 150:88-92. [PMID: 20456353 DOI: 10.1111/j.1365-2141.2010.08217.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fanconi anaemia (FA) is a recessive genetic disorder characterized by bone marrow failure, birth defects and cancer. Cells from FA patients are particularly defective in removing DNA interstrand crosslinks. We have developed a working chromatography purification scheme for FANCD2, a pivotal player in the FA DNA repair pathway, to facilitate identification of FANCD2 interacting partners. In doing so, at least three distinct FANCD2 subcomplexes were found to be present, designated as large, middle, and small complexes. The small complex is composed of tetramer of FANCD2 polypeptides, which may be the building block for other FANCD2 subcomplexes.
Collapse
Affiliation(s)
- Gang Zhi
- Department of Microbiology, University of Virginia Health System, Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010; 37:879-86. [PMID: 20347429 DOI: 10.1016/j.molcel.2010.01.036] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/28/2009] [Accepted: 01/29/2010] [Indexed: 12/24/2022]
Abstract
FANCM is a Fanconi anemia nuclear core complex protein required for the functional integrity of the FANC-BRCA pathway of DNA damage response and repair. Here we report the isolation and characterization of two histone-fold-containing FANCM-associated proteins, MHF1 and MHF2. We show that suppression of MHF1 expression results in (1) destabilization of FANCM and MHF2, (2) impairment of DNA damage-induced monoubiquitination and foci formation of FANCD2, (3) defective chromatin localization of FA nuclear core complex proteins, (4) elevated MMC-induced chromosome aberrations, and (5) sensitivity to MMC and camptothecin. We also provide biochemical evidence that MHF1 and MHF2 assemble into a heterodimer that binds DNA and enhances the DNA branch migration activity of FANCM. These findings reveal critical roles of the MHF1-MHF2 dimer in DNA damage repair and genome maintenance through FANCM.
Collapse
Affiliation(s)
- Thiyam Ramsing Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|