1
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Toh H, Smolentsev A, Sadjadi R, Clegg D, Yan J, Stewart R, Thomson JA, Jiang P. Transcriptomic clock predicts vascular changes of prodromal diabetic retinopathy. Sci Rep 2023; 13:12968. [PMID: 37563287 PMCID: PMC10415264 DOI: 10.1038/s41598-023-40328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy. Elevated acellular capillary density is considered a reliable quantitative trait present in the early development of retinopathy. Hence, in this study, we interrogated whole retinal vascular transcriptomic changes via a Nile rat model to better understand the early pathogenesis of diabetic retinopathy. We uncovered the complexity of associations between acellular capillary density and the joint factors of blood glucose, diet, and sex, which was modeled through a Bayesian network. Using segmented regressions, we have identified different gene expression patterns and enriched Gene Ontology (GO) terms associated with acellular capillary density increasing. We developed a random forest regression model based on expression patterns of 14 genes to predict the acellular capillary density. Since acellular capillary density is a reliable quantitative trait in early diabetic retinopathy, and thus our model can be used as a transcriptomic clock to measure the severity of the progression of early retinopathy. We also identified NVP-TAE684, geldanamycin, and NVP-AUY922 as the top three potential drugs which can potentially attenuate the early DR. Although we need more in vivo studies in the future to support our re-purposed drugs, we have provided a data-driven approach to drug discovery.
Collapse
Affiliation(s)
- Huishi Toh
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Alexander Smolentsev
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ryan Sadjadi
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Dennis Clegg
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jingqi Yan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA
| | - Ron Stewart
- Morgridge Institute For Research, Madison, WI, 53706, USA
| | - James A Thomson
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Morgridge Institute For Research, Madison, WI, 53706, USA
| | - Peng Jiang
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Liu H, Cheng J, Zhuang X, Qi B, Li F, Zhang B. Genomic instability and eye diseases. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:103-111. [PMID: 37846358 PMCID: PMC10577848 DOI: 10.1016/j.aopr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 10/18/2023]
Abstract
Background Genetic information is stored in the bases of double-stranded DNA. However, the integrity of DNA molecules is constantly threatened by various mutagenic agents, including pollutants, ultraviolet light (UV), and medications. To counteract these environmental damages, cells have established multiple mechanisms, such as producing molecules to identify and eliminate damaged DNA, as well as reconstruct the original DNA structures. Failure or insufficiency of these mechanisms can cause genetic instability. However, the role of genome stability in eye diseases is still under-researched, despite extensive study in cancer biology. Main text As the eye is directly exposed to the external environment, the genetic materials of ocular cells are constantly under threat. Some of the proteins essential for DNA damage repair, such as pRb, p53, and RAD21, are also key during the ocular disease development. In this review, we discuss five ocular diseases that are associated with genomic instability. Retinoblastoma and pterygium are linked to abnormal cell cycles. Fuchs' corneal endothelial dystrophy and age-related macular degeneration are related to the accumulation of DNA damage caused by oxidative damage and UV. The mutation of the subunit of the cohesin complex during eye development is linked to sclerocornea. Conclusions Failure of DNA damage detection or repair leads to increased genomic instability. Deciphering the role of genomic instability in ocular diseases can lead to the development of new treatments and strategies, such as protecting vulnerable cells from risk factors or intensifying damage to unwanted cells.
Collapse
Affiliation(s)
- Hongyan Liu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Xiaoyun Zhuang
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Fenfen Li
- The Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Bining Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
4
|
Huang Y, Chen X, Jiang Z, Luo Q, Wan L, Hou X, Yu K, Zhuang J. Transcriptome Sequencing Reveals Tgf-β-Mediated Noncoding RNA Regulatory Mechanisms Involved in DNA Damage in the 661W Photoreceptor Cell Line. Genes (Basel) 2022; 13:2140. [PMID: 36421815 PMCID: PMC9691224 DOI: 10.3390/genes13112140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 10/08/2023] Open
Abstract
Transforming growth factor β (Tgf-β), a pleiotropic cytokine, can enhance DNA repair in various cells, including cancer cells and neurons. The noncoding regulatory system plays an important role in Tgf-β-mediated biological activities, whereas few studies have explored its role in DNA damage and repair. In this study, we suggested that Tgf-β improved while its inhibitor LSKL impaired DNA repair and cell viability in UV-irradiated 661W cells. Moreover, RNA-seq was carried out, and a total of 106 differentially expressed (DE)-mRNAs and 7 DE-lncRNAs were identified between UV/LSKL and UV/ctrl 661W cells. Gene ontology and Reactome analysis confirmed that the DE-mRNAs were enriched in multiple DNA damaged- and repair-related biological functions and pathways. We then constructed a ceRNA network that included 3 lncRNAs, 19 miRNAs, and 29 mRNAs with a bioinformatics prediction. Through RT-qPCR and further functional verification, 2 Tgf-β-mediated ceRNA axes (Gm20559-miR-361-5p-Oas2/Gbp7) were further identified. Gm20559 knockout or miR-361-5p mimics markedly impaired DNA repair and cell viability in UV-irradiated 661W cells, which confirms the bioinformatics results. In summary, this study revealed that Tgf-β could reduce DNA damage in 661W cells, provided a Tgf-β-associated ceRNA network for DNA damage and repair, and suggested that the molecular signatures may be useful candidates as targets of treatment for photoreceptor pathology.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhigao Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
5
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
6
|
Kaczynski TJ, Au ED, Farkas MH. Exploring the lncRNA localization landscape within the retinal pigment epithelium under normal and stress conditions. BMC Genomics 2022; 23:539. [PMID: 35883037 PMCID: PMC9327364 DOI: 10.1186/s12864-022-08777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.
Collapse
Affiliation(s)
- Tadeusz J Kaczynski
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
- Research Service, VA Medical Center, Buffalo, NY, USA
| | - Elizabeth D Au
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY, USA.
- Research Service, VA Medical Center, Buffalo, NY, USA.
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
8
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
9
|
Kalteh S, Saadat M. Lack of association between three common genetic variations of XPC and susceptibility to age-related macular degeneration, a preliminary study. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Numerous association studies have indicated that genetic alterations in genes involved in DNA repair processes are associated with the risk of age-related macular degeneration (ARMD). There is no published study on the relationship between common xeroderma pigmentosum complementation group C (XPC, MIM 613208) polymorphisms and susceptibility to ARMD. The aim of this study is to determine whether three common (Ala499Val, Lys939Gln, and PAT) genetic variants of XPC are associated with the risk of developing ARMD. A total of 120 ARMD patients and 118 healthy controls were included in the study. Genotyping analyses were carried out by PCR-based methods.
Results
Our analysis revealed that there was no relationship between the XPC polymorphisms and susceptibility to ARMD. In both case and control groups, strong linkage disequilibrium existed between three common (Ala499Val, Lys939Gln, and PAT) genetic polymorphisms of XPC. Statistical analysis showed no association between the haplotypes and the risk of ARMD.
Conclusions
The present data indicated that the common polymorphisms of XPC are not susceptible genetic variations for ARMD.
Collapse
|
10
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
11
|
RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) Gene Variants with Predisposition to Age-Related Macular Degeneration. DISEASE MARKERS 2019; 2019:5631083. [PMID: 31191752 PMCID: PMC6525907 DOI: 10.1155/2019/5631083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Background Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of a central part of the neural retina (macula) and a leading cause of blindness in elderly people. While it is known that the AMD is a multifactorial disease, genetic factors involved in lipid metabolism, inflammation, and neovascularization are currently being widely studied in genome-wide association studies (GWAS). The aim of our study was to evaluate the impact of new single nucleotide polymorphisms (SNPs) in RAD51B, TRIB1, COL8A1, and COL10A1 genes on AMD development. Methods Case-control study involved 254 patients diagnosed with early AMD, 244 patients with exudative AMD, and 942 control subjects. The genotyping of RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) was carried out using TaqMan assays by a real-time polymerase chain reaction (RT-PCR) method. Results Statistically significant difference was found in genotype (TT, TC, and CC) distribution of COL8A1 rs13095226 between exudative AMD and control groups (60.2%, 33.6%, and 6.1% vs. 64.9%, 32.3%, and 2.9%, respectively, p = 0.036). Also, comparing with TT+TC, rs13095226 CC genotype was associated with 3.5-fold increased odds of exudative AMD development (OR = 3.540; 95% CI: 1.415-8.856; p = 0.007). Conclusion Our study revealed a strong association between a variant in COL8A1 (rs13095226) and exudative AMD development.
Collapse
|
12
|
Retinal Neuron Is More Sensitive to Blue Light-Induced Damage than Glia Cell Due to DNA Double-Strand Breaks. Cells 2019; 8:cells8010068. [PMID: 30669263 PMCID: PMC6356720 DOI: 10.3390/cells8010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Blue light is a major component of visible light and digital displays. Over-exposure to blue light could cause retinal damage. However, the mechanism of its damage is not well defined. Here, we demonstrate that blue light (900 lux) impairs cell viability and induces cell apoptosis in retinal neurocytes in vitro. A DNA electrophoresis assay shows severe DNA damage in retinal neurocytes at 2 h after blue light treatment. γ-H2AX foci, a specific marker of DNA double-strand breaks (DSBs), is mainly located in the Map2-posotive neuron other than the glia cell. After assaying the expression level of proteins related to DNA repair, Mre11, Ligase IV and Ku80, we find that Ku80 is up-regulated in retinal neurocytes after blue light treatment. Interestingly, Ku80 is mainly expressed in glia fibrillary acidic protein (GFAP)-positive glia cells. Moreover, following blue light exposure in vivo, DNA DSBs are shown in the ganglion cell layer and only observed in Map2-positive cells. Furthermore, long-term blue light exposure significantly thinned the retina in vivo. Our findings demonstrate that blue light induces DNA DSBs in retinal neurons, and the damage is more pronounced compared to glia cells. Thus, this study provides new insights into the mechanisms of the effect of blue light on the retina.
Collapse
|
13
|
Dobrzyńska MM, Pachocki KA, Owczarska K. DNA strand breaks in peripheral blood leucocytes of Polish blood donors. Mutagenesis 2017; 33:69-76. [DOI: 10.1093/mutage/gex024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Krzysztof A Pachocki
- Department of Radiation Hygiene, Central Laboratory for Radiological Protection, Warsaw, Poland
| | - Katarzyna Owczarska
- The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Clinic of Diagnostic Oncology and Cardiooncology, Warsaw, Poland
| |
Collapse
|
14
|
Bonyadi M, Mehdizadeh F, Jabbarpoor Bonyadi MH, Soheilian M, Javadzadeh A, Yaseri M. Association of the DNA repair SMUG1 rs3087404 polymorphism and its interaction with high sensitivity C-reactive protein for age-related macular degeneration in Iranian patients. Ophthalmic Genet 2017; 38:422-427. [DOI: 10.1080/13816810.2016.1251947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mortaza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faride Mehdizadeh
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Masoud Soheilian
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Javadzadeh
- Department of Ophthalmology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yaseri
- Department of Biostatistics and Epidemiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress. Int J Mol Sci 2016; 17:ijms17060898. [PMID: 27314326 PMCID: PMC4926432 DOI: 10.3390/ijms17060898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids—which regulates cell proliferation, differentiation, and the visual cycle in the retina—was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD.
Collapse
|
16
|
Tokarz P, Kaarniranta K, Blasiak J. Role of the Cell Cycle Re-Initiation in DNA Damage Response of Post-Mitotic Cells and Its Implication in the Pathogenesis of Neurodegenerative Diseases. Rejuvenation Res 2016. [DOI: 10.1089/rej.2015.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska, Lodz, Poland
| |
Collapse
|
17
|
Chen P, Hu H, Chen Z, Cai X, Zhang Z, Yang Y, Yu N, Zhang J, Xia L, Ge J, Yu K, Zhuang J. BRCA1 silencing is associated with failure of DNA repairing in retinal neurocytes. PLoS One 2014; 9:e99371. [PMID: 24919198 PMCID: PMC4053421 DOI: 10.1371/journal.pone.0099371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/14/2014] [Indexed: 02/03/2023] Open
Abstract
Retinal post-mitotic neurocytes display genomic instability after damage induced by physiological or pathological factors. The involvement of BRCA1, an important factor in development and DNA repair in mature retinal neurocytes remains unclear. Thus, we investigated the developmental expression profile of BRCA1 in the retina and defined the role of BRCA1 in DNA repair in retinal neurocytes. Our data show the expression of BRCA1 is developmentally down-regulated in the retinas of mice after birth. Similarly, BRCA1 is down-regulated after differentiation induced by TSA in retinal precursor cells. An end-joining activity assay and DNA fragmentation analysis indicated that the DNA repair capacity is significantly reduced. Moreover, DNA damage in differentiated cells or cells in which BRCA1 is silenced by siRNA interference is more extensive than that in precursor cells subjected to ionizing radiation. To further investigate non-homologous end joining (NHEJ), the major repair pathway in non-divided neurons, we utilized an NHEJ substrate (pEPI-NHEJ) in which double strand breaks are generated by I-SceI. Our data showed that differentiation and the down-regulation of BRCA1 respectively result in a 2.39-fold and 1.68-fold reduction in the total NHEJ frequency compared with that in cells with normal BRCA1. Furthermore, the analysis of NHEJ repair junctions of the plasmid substrate indicated that BRCA1 is involved in the fidelity of NHEJ. In addition, as expected, the down-regulation of BRCA1 significantly inhibits the viability of retina precursor cells. Therefore, our data suggest that BRCA1 plays a critical role in retinal development and repairs DNA damage of mature retina neurocytes.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Huan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Zhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Zhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Na Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Lei Xia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdon, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Chu XK, Meyerle CB, Liang X, Chew EY, Chan CC, Tuo J. In-depth analyses unveil the association and possible functional involvement of novel RAD51B polymorphisms in age-related macular degeneration. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9627. [PMID: 24526414 PMCID: PMC4082603 DOI: 10.1007/s11357-014-9627-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/03/2014] [Indexed: 05/02/2023]
Abstract
The contribution of DNA damage to the pathogenesis of age-related macular degeneration (AMD) has been reported. Recently, a genomewide association study detected the association of a single-nucleotide polymorphism (SNP) in RAD51B (rs8017304 A>G) with AMD. RAD51B is involved in recombinational repair of DNA double-strand breaks. We analyzed RAD51B influence on AMD using two cohorts from Caucasian and Han Chinese populations. The Caucasian set replicated the rs8017304 A>G association and revealed two novel AMD-associated SNPs in RAD51B, rs17105278 T>C and rs4902566 C>T. Under the dominant model, these two SNPs exhibit highly significant disease risk. SNP-SNP interaction analysis on rs17105278 T>C and rs4902566 C>T homozygous demonstrated a synergistic effect on AMD risk, reaching an odds ratio multifold higher than well-established AMD susceptibility loci in genes such as CFH, HTRA1, and ARMS2. Functional study revealed lower RAD51B mRNA expression in cultured primary human fetal retinal pigment epithelium (hfRPE) carrying rs17105278 T>C variants than in hfRPE carrying rs17105278 wild type. We concluded that the risk of developing AMD exhibits dose dependency as well as an epistatic combined effect in rs17105278 T>C and rs4902566 C>T carriers and that the elevated risk for rs17105278 T>C carriers may be due to decreased transcription of RAD51B. This study further confirms the role of DNA damage/DNA repair in AMD pathogenesis.
Collapse
Affiliation(s)
- Xi K. Chu
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| | - Catherine B. Meyerle
- />Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD USA
| | - Xiaoling Liang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Emily Y. Chew
- />Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD USA
| | - Chi-Chao Chan
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| | - Jingsheng Tuo
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| |
Collapse
|
19
|
Association between polymorphism of the DNA repair SMUG1 and UNG genes and age-related macular degeneration. Retina 2014; 34:38-47. [PMID: 23714858 DOI: 10.1097/iae.0b013e31829477d8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the association between the g.4235T>C (rs2337395) polymorphism of the UNG gene and the c.-31A>G (rs3087404) polymorphism of the SMUG1 gene and the risk of age-related macular degeneration (AMD), as well as modulation of this association by some environmental and lifestyle factors. METHODS Overall, 272 AMD patients and 105 control subjects were enrolled in this study. Both polymorphisms were genotyped by restriction fragment length polymorphism-polymerase chain reaction (PCR-RFLP). RESULTS The C/C genotype of the g.4235T>C polymorphism of the UNG gene was associated with an increased risk of dry AMD (odds ratio, 2.54), whereas the T/T genotype of this polymorphism decreased such risk (odds ratio, 0.41). The presence of the T allele of the g.4235T>C polymorphism and the A allele of the c.-31A>G polymorphism of the SMUG1 gene (odds ratio, 2.17 and 2.18, respectively) was associated with an increased risk of AMD severity, expressed by the comparison of the frequencies of genotypes in the group of patients with wet AMD versus those with dry AMD. Conversely, the C/C genotype of the g.4235T>C polymorphism, the G/G genotype of the c.-31A>G polymorphism, and the C/C-G/G combined genotype of both polymorphisms had a protective effect (odds ratio, 0.48, 0.46, and 0.18; respectively). CONCLUSION The results obtained suggest the potential role of the g.4235T>C and the c.-31A>G polymorphisms in AMD pathogenesis.
Collapse
|
20
|
Soares JP, Mota MP, Duarte JA, Collins A, Gaivão I. Age-related increases in human lymphocyte DNA damage: is there a role of aerobic fitness? Cell Biochem Funct 2013; 31:743-8. [DOI: 10.1002/cbf.2966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jorge Pinto Soares
- University of Trás-os-Montes e Alto Douro; CIDESD-Sports; Vila Real Portugal
| | - Maria Paula Mota
- University of Trás-os-Montes e Alto Douro; CIDESD-Sports; Vila Real Portugal
| | | | | | - Isabel Gaivão
- University of Trás-os-Montes e Alto Douro; CECAV-Genetic and Biotechnology; Vila Real Portugal
| |
Collapse
|
21
|
Jacob KD, Hooten NN, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 2013; 134:139-57. [PMID: 23428415 PMCID: PMC3664937 DOI: 10.1016/j.mad.2013.02.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 11/20/2022]
Abstract
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant.
Collapse
Affiliation(s)
- Kimberly D. Jacob
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrzej R. Trzeciak
- Molecular Neurobiology Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
23
|
Czarny P, Kasprzak E, Wielgorski M, Udziela M, Markiewicz B, Blasiak J, Szaflik J, Szaflik JP. DNA damage and repair in Fuchs endothelial corneal dystrophy. Mol Biol Rep 2012; 40:2977-83. [PMID: 23275192 PMCID: PMC3594825 DOI: 10.1007/s11033-012-2369-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/17/2012] [Indexed: 01/01/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40 years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called "cornea guttata", apoptosis of corneal endothelial cells, dysfunction of Descement's membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Saadat I, Vakili-Ghartavol R, Farvardin-Jahromi M, Saadat M. Association between exudative age-related macular degeneration and the G6721T polymorphism of XRCC7 in outdoor subjects. KOREAN JOURNAL OF OPHTHALMOLOGY 2012. [PMID: 23204796 PMCID: PMC3506815 DOI: 10.3341/kjo.2012.26.6.423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate whether the G6721T polymorphism (rs.7003908) of the non-homologous end-joining DNA repair XRCC7 gene contributes to the development of exudative age-related macular degeneration (ARMD). METHODS The present case-control study consisted of 111 patients with exudative ARMD and 112 sex frequency-matched healthy controls that were randomly selected from unrelated volunteers in the same clinic. Genotypes were determined by the Restriction Fragment Length Polymorphism (PCR-RFLP) based method. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for ARMD risk associated with polymorphism of XRCC7. In all analysis the GG genotype was considered to be the reference genotype. RESULTS There was no significant association between genotypes of XRCC7 and susceptibility to ARMD. Considering the significant difference in age distribution between cases and controls, age was used as a covariate in further analysis. After ORs were adjusted for age, the same result was observed. In the next step we stratified our subjects into outdoor and indoor groups according to their job titles. The outdoor and indoor patients were occupationally exposed to sunlight and not exposed to sunlight, respectively. Our present study showed that among indoor subjects there was no association between XRCC7 polymorphism and susceptibility to ARMD. However, among outdoor subjects, the GT + TT genotypes compared to the GG genotype increased the risk of ARMD (OR, 3.13; 95% CI, 1.04-9.39; p = 0.042). CONCLUSIONS Our study revealed that the T allele of the G6721T polymorphism of XRCC7 increased the risk of ARMD among outdoor subjects.
Collapse
Affiliation(s)
- Iraj Saadat
- Department of Biology, Shiraz University College of Sciences, Shiraz, Iran
| | | | | | | |
Collapse
|
25
|
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33:399-417. [PMID: 22510306 PMCID: PMC3392472 DOI: 10.1016/j.mam.2012.03.009] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/24/2022]
Abstract
The retina resides in an environment that is primed for the generation of reactive oxygen species (ROS) and resultant oxidative damage. The retina is one of the highest oxygen-consuming tissues in the human body. The highest oxygen levels are found in the choroid, but this falls dramatically across the outermost retina, creating a large gradient of oxygen towards the retina and inner segments of the photoreceptors which contain high levels of polyunsaturated fatty acids. This micro-environment together with abundant photosensitizers, visible light exposure and a high energy demand supports a highly oxidative milieu. However, oxidative damage is normally minimized by the presence of a range of antioxidant and efficient repair systems. Unfortunately, as we age oxidative damage increases, antioxidant capacity decreases and the efficiency of reparative systems become impaired. The result is retinal dysfunction and cell loss leading to visual impairment. It appears that these age-related oxidative changes are a hallmark of early age-related macular degeneration (AMD) which, in combination with hereditary susceptibility and other retinal modifiers, can progress to the pathology and visual morbidity associated with advanced AMD. This review reassesses the consequences of oxidative stress in AMD and strategies for preventing or reversing oxidative damage in retinal tissues.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
26
|
Synowiec E, Blasiak J, Zaras M, Szaflik J, Szaflik JP. Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration. Exp Eye Res 2012; 98:58-66. [PMID: 22469746 DOI: 10.1016/j.exer.2012.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 01/10/2012] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Age-Related Macular Degeneration (AMD) is an eye disease that results in progressive and irreversible loss of central vision and is considered as the primary cause of visual impairment, including blindness, in the elderly in industrialized countries. Oxidative stress has been implicated in the pathogenesis of AMD. The hOGG1 and the MUTYH genes play an important role in the repair of oxidatively damaged DNA in the base excision repair pathway. The DNA glycosylases encoded by the hOGG1 and MUTYH genes initiate this pathway by recognizing and removing 8-oxoguanine and adenine paired with 8-oxoguanine, respectively. Our study was designed to examine the association between the c.977C>G polymorphism (rs1052133) of the hOGG1 gene and the c.972G>C polymorphism (rs3219489) of the MUTYH gene and AMD as well as the modulation of this association by some clinical and lifestyle factors. Genotypes were determined in DNA from blood of 271 AMD patients, including 101 with wet and 170 with dry form of the disease and 105 sex- and age-matched individuals without AMD. We observed an association between AMD, dry and wet forms of AMD and the C/G genotype and the G allele of the c.977C>G-hOGG1 polymorphism (p 0.006; 0.009; 0.021 and 0.004; 0.005; 0.016 respectively). On the other hand, the C/C genotype and the C allele reduced the risk of AMD as well as of its dry form or wet form (p 0.002; 0.003; 0.010 and 0.004; 0.005; 0.016, respectively). Therefore, the associations we detected were driven by the dry AMD. We observed some statistically significant association between the occurrence of AMD and its dry and wet forms and genotypes of the other polymorphism, the c.972G>C-MUTYH polymorphism, but due to borderline character of all this association we do not consider them as medically relevant. Our findings suggest that the c.977C>G-hOGG1 polymorphism may be associated with dry AMD. Further studies are needed to determine possible association between AMD and the c.972G>C-MUTYH polymorphism.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | | | | | | |
Collapse
|
27
|
Chalam KV, Khetpal V, Rusovici R, Balaiya S. A review: role of ultraviolet radiation in age-related macular degeneration. Eye Contact Lens 2011; 37:225-32. [PMID: 21646979 DOI: 10.1097/icl.0b013e31821fbd3e] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in the western world. The retina is highly susceptible to photochemical damage from continuous exposure of light and oxygen. The cornea and the lens block a major portion of the ultraviolet (UV) radiation from reaching the retina (<295 nm). The relationship between UV light exposure and AMD is unclear, although short wavelength radiation and the blue light induce significant oxidative stress to the retinal pigment epithelium. Epidemiologic evidence indicates a trend toward association between severity of light exposure and AMD. In this review, we discuss type 1 and type 2 photochemical damage that occurs in response to UV exposure. We examine the impact of different doses of exposure to UV radiation and the subsequent production of oxidative stress in AMD. Local and systemic protective mechanisms of the retina including antioxidant enzymes and macular pigments are reviewed. This article provides a review of possible cellular and molecular effects of UV radiation exposure in AMD and potential therapies that may prevent blindness resulting from this disease.
Collapse
Affiliation(s)
- K V Chalam
- Department of Ophthalmology, University of Florida-College of Medicine, Jacksonville, FL 32209, USA.
| | | | | | | |
Collapse
|
28
|
Szczepanska J, Poplawski T, Synowiec E, Pawlowska E, Chojnacki CJ, Chojnacki J, Blasiak J. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol Biol Rep 2011; 39:1561-74. [PMID: 21617943 PMCID: PMC3249584 DOI: 10.1007/s11033-011-0895-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.
Collapse
Affiliation(s)
- Joanna Szczepanska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Cezary J. Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Jan Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
29
|
Yeghiazaryan K, Cebioglu M, Braun M, Kuhn W, Schild HH, Golubnitschaja O. Noninvasive subcellular imaging in breast cancer risk assessment: construction of diagnostic windows. Per Med 2011; 8:321-330. [PMID: 29783528 DOI: 10.2217/pme.11.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM Breast cancer is the most common cause of cancer-related death among women. Delayed diagnosis leads to development of metastasis and impairs the outcome. This study was designed to utilize subcellular DNA imaging by 'comet assay' and determine pathology-specific comet patterns as the robust biomarker to distinguish between high and low risk for breast cancer development among predisposed individuals with benign breast alterations. MATERIALS & METHODS A total of 161 patients were grouped as follows: benignancy, premenopause (n = 59); benignancy, postmenopause (n = 20); breast cancer, premenopause (n = 19); breast cancer, postmenopause (n = 63). On average, 800-1000 comets were evaluated per patient. RESULTS & CONCLUSION The qualitative comet assay is an innovative approach for breast cancer risk assessment that can be utilized for the screening of highly predisposed individuals among patients with benign breast alterations. Pathology-specific comet patterns have been identified as the robust biomarker for breast cancer risk. Mathematic model-based diagnostic windows have been constructed for their clinical application.
Collapse
Affiliation(s)
- Kristina Yeghiazaryan
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.,Breast Center, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | - Melanie Cebioglu
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.,Breast Center, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | - Michael Braun
- Breast Center, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany.,Department of Obstetrics & Gynecology, University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | - Walther Kuhn
- Breast Center, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany.,Department of Obstetrics & Gynecology, University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | - Hans H Schild
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.,Breast Center, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund-Freud Str. 25, D-53105 Bonn, Germany
| | | |
Collapse
|
30
|
Pawlowska E, Poplawski T, Ksiazek D, Szczepanska J, Blasiak J. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 696:122-9. [DOI: 10.1016/j.mrgentox.2009.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/25/2009] [Accepted: 12/28/2009] [Indexed: 01/22/2023]
|