1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Zimmermann A, Prieto-Vivas JE, Voordeckers K, Bi C, Verstrepen KJ. Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases. Trends Microbiol 2024; 32:884-901. [PMID: 38493013 DOI: 10.1016/j.tim.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
The natural process of evolutionary adaptation is often exploited as a powerful tool to obtain microbes with desirable traits. For industrial microbes, evolutionary engineering is often used to generate variants that show increased yields or resistance to stressful industrial environments, thus obtaining superior microbial cell factories. However, even in large populations, the natural supply of beneficial mutations is typically low, which implies that obtaining improved microbes is often time-consuming and inefficient. To overcome this limitation, different techniques have been developed that boost mutation rates. While some of these methods simply increase the overall mutation rate across a genome, others use recent developments in DNA synthesis, synthetic biology, and CRISPR-Cas techniques to control the type and location of mutations. This review summarizes the most important recent developments and methods in the field of evolutionary engineering in model microorganisms. It discusses how both in vitro and in vivo approaches can increase the genetic diversity of the host, with a special emphasis on in vivo techniques for the optimization of metabolic pathways for precision fermentation.
Collapse
Affiliation(s)
- Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Julian E Prieto-Vivas
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Karin Voordeckers
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; College of Life Science, Tianjin Normal University, Tianjin, China
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium; VIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
3
|
Elfman J, Goins L, Heller T, Singh S, Wang YH, Li H. Discovery of a polymorphic gene fusion via bottom-up chimeric RNA prediction. Nucleic Acids Res 2024; 52:4409-4421. [PMID: 38587197 PMCID: PMC11077074 DOI: 10.1093/nar/gkae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.
Collapse
Affiliation(s)
- Justin Elfman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lynette Goins
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Tessa Heller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Li Z, Liao Y, Tang C, Xu L, Peng B, Xu X. RBM14 promotes DNA end resection during homologous recombination repair. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1864-1873. [PMID: 37559455 PMCID: PMC10753362 DOI: 10.3724/abbs.2023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 08/11/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is crucial for the maintenance of genome stability and integrity. In this study, we aim to identify novel RNA binding proteins (RBPs) involved in HR repair because little is known about RBP function in HR. For this purpose, we carry out pulldown assays using a synthetic ssDNA/dsDNA structure coated with replication protein A (RPA) to mimic resected DNA, a crucial intermediate in HR-mediated DSB repair. Using this approach, we identify RNA-binding motif protein 14 (RBM14) as a potential binding partner. We further show that RBM14 interacts with an essential HR repair factor, CtIP. RBM14 is crucial for CtIP recruitment to DSB sites and for subsequent RPA coating and RAD51 replacement, facilitating efficient HR repair. Moreover, inhibition of RBM14 expression sensitizes cancer cells to X-ray irradiation. Together, our results demonstrate that RBM14 promotes DNA end resection to ensure HR repair and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zheng Li
- College of Life SciencesCapital Normal UniversityBeijing100048China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Yanting Liao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Chen Tang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100091China
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM)Dehua HospitalDehua362500China
| | - Linli Xu
- College of Life SciencesCapital Normal UniversityBeijing100048China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer CenterMarshall Laboratory of Biomedical EngineeringShenzhen University Medical SchoolShenzhen UniversityShenzhen518060China
| |
Collapse
|
5
|
Wang J, Muste Sadurni M, Saponaro M. RNAPII response to transcription-blocking DNA lesions in mammalian cells. FEBS J 2023; 290:4382-4394. [PMID: 35731652 PMCID: PMC10952651 DOI: 10.1111/febs.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 09/21/2023]
Abstract
RNA polymerase II moves along genes to decode genetic information stored in the mammalian genome into messenger RNA and different forms of non-coding RNA. However, the transcription process is frequently challenged by DNA lesions caused by exogenous and endogenous insults, among which helix-distorting DNA lesions and double-stranded DNA breaks are particularly harmful for cell survival. In response to such DNA damage, RNA polymerase II transcription is regulated both locally and globally by multi-layer mechanisms, whereas transcription-blocking lesions are repaired before transcription can recover. Failure in DNA damage repair will cause genome instability and cell death. Although recent studies have expanded our understanding of RNA polymerase II regulation confronting DNA lesions, it is still not always clear what the direct contribution of RNA polymerase II is in the DNA damage repair processes. In this review, we focus on how RNA polymerase II and transcription are both repressed by transcription stalling lesions such as DNA-adducts and double strand breaks, as well as how they are actively regulated to support the cellular response to DNA damage and favour the repair of lesions.
Collapse
Affiliation(s)
- Jianming Wang
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Martina Muste Sadurni
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| | - Marco Saponaro
- Transcription Associated Genome Instability Laboratory, Institute of Cancer and Genomic SciencesUniversity of BirminghamUK
| |
Collapse
|
6
|
Tschage L, Kowarz E, Marschalek R. Model System to Analyze RNA-Mediated DNA Repair in Mammalian Cells. CRISPR J 2023. [PMID: 37200486 DOI: 10.1089/crispr.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
"RNA-templated/directed DNA repair" is a biological mechanism that has been experimentally demonstrated in bacteria, yeast, and mammalian cells. Recent study has shown that small noncoding RNAs (DDRNAs) and/or newly RNAPII transcribed RNAs (dilncRNAs) are orchestrating the initial steps of double-strand break (DSB) repair. In this study, we demonstrate that also pre-mRNA could be used as direct or indirect substrate for DSB repair. Our test system is based on (1) a stably integrated mutant reporter gene that produces constitutively a nonspliceable pre-mRNA, (2) a transiently expressed sgRNA-guided dCas13b::ADAR fusion protein to specifically RNA edit the nonspliceable pre-mRNA, and (3) transiently expressed I-SceI to create a DSB situation to study the effect of spliceable pre-mRNA on DNA repair. Based on our data, the RNA-edited pre-mRNA was used in cis for the DSB repair process, thereby converting the genomically encoded mutant reporter gene into an active reporter gene. Overexpression and knockdown of several cellular proteins were performed to delineate their role in this novel "RNA-mediated end joining" pathway.
Collapse
Affiliation(s)
- Lisa Tschage
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Balboni B, Rinaldi F, Previtali V, Ciamarone A, Girotto S, Cavalli A. Novel Insights into RAD52’s Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies. Cancers (Basel) 2023; 15:cancers15061817. [PMID: 36980703 PMCID: PMC10046612 DOI: 10.3390/cancers15061817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Ciamarone
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| |
Collapse
|
8
|
Chakraborty A, Tapryal N, Islam A, Sarker AH, Manohar K, Mitra J, Hegde ML, Hazra T. Human DNA polymerase η promotes RNA-templated error-free repair of DNA double-strand breaks. J Biol Chem 2023; 299:102991. [PMID: 36758800 PMCID: PMC10011834 DOI: 10.1016/j.jbc.2023.102991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence indicates that RNA plays a critical role in orchestrating DNA double-strand break repair (DSBR). Recently, we showed that homologous nascent RNA can be used as a template for error-free repair of double-strand breaks (DSBs) in the transcribed genome and to restore the missing sequence at the break site via the transcription-coupled classical nonhomologous end-joining (TC-NHEJ) pathway. TC-NHEJ is a complex multistep process in which a reverse transcriptase (RT) is essential for synthesizing the DNA strand from template RNA. However, the identity of the RT involved in the TC-NHEJ pathway remained unknown. Here, we report that DNA polymerase eta (Pol η), known to possess RT activity, plays a critical role in TC-NHEJ. We found that Pol η forms a multiprotein complex with RNAP II and other TC-NHEJ factors, while also associating with nascent RNA. Moreover, purified Pol η, along with DSBR proteins PNKP, XRCC4, and Ligase IV can fully repair RNA templated 3'-phosphate-containing gapped DNA substrate. In addition, we demonstrate here that Pol η deficiency leads to accumulation of R-loops and persistent strand breaks in the transcribed genes. Finally, we determined that, in Pol η depleted but not in control cells, TC-NHEJ-mediated repair was severely abrogated when a reporter plasmid containing a DSB with several nucleotide deletion within the E. coli lacZ gene was introduced for repair in lacZ-expressing mammalian cells. Thus, our data strongly suggest that RT activity of Pol η is required in error-free DSBR.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nisha Tapryal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Azharul Islam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Altaf H Sarker
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kodavati Manohar
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Tapas Hazra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
9
|
Pollina EA, Gilliam DT, Landau AT, Lin C, Pajarillo N, Davis CP, Harmin DA, Yap EL, Vogel IR, Griffith EC, Nagy MA, Ling E, Duffy EE, Sabatini BL, Weitz CJ, Greenberg ME. A NPAS4-NuA4 complex couples synaptic activity to DNA repair. Nature 2023; 614:732-741. [PMID: 36792830 PMCID: PMC9946837 DOI: 10.1038/s41586-023-05711-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/05/2023] [Indexed: 02/17/2023]
Abstract
Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.
Collapse
Affiliation(s)
- Elizabeth A Pollina
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel T Gilliam
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew T Landau
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Naomi Pajarillo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ian R Vogel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Erin E Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
10
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
11
|
Betlej G, Lewińska A, Adamczyk-Grochala J, Błoniarz D, Rzeszutek I, Wnuk M. Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicol In Vitro 2022; 80:105323. [DOI: 10.1016/j.tiv.2022.105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
|
12
|
Franklin A, Steele EJ. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet 2021; 38:426-436. [PMID: 34740453 DOI: 10.1016/j.tig.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role. Recent evidence confirms that human polymerase η can act as a reverse transcriptase. Here, we compare the popular suggestion of mutation at A/T pairs through nucleotide mispairing (owing to polymerase error) during short-patch repair synthesis with the alternative proposal of mutation at A/T pairs through RNA editing and RNA-directed DNA repair.
Collapse
Affiliation(s)
- Andrew Franklin
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
13
|
Luo Y, Na R, Nowak JS, Qiu Y, Lu QS, Yang C, Marsolais F, Tian L. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC PLANT BIOLOGY 2021; 21:419. [PMID: 34517842 PMCID: PMC8436479 DOI: 10.1186/s12870-021-03138-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND A key issue for implementation of CRISPR-Cas9 genome editing for plant trait improvement and gene function analysis is to efficiently deliver the components, including guide RNAs (gRNAs) and Cas9, into plants. Plant virus-based gRNA delivery strategy has proven to be an important tool for genome editing. However, its application in soybean which is an important crop has not been reported yet. ALSV (apple latent spherical virus) is highly infectious virus and could be explored for delivering elements for genome editing. RESULTS To develop a ALSV-based gRNA delivery system, the Cas9-based Csy4-processed ALSV Carry (CCAC) system was developed. In this system, we engineered the soybean-infecting ALSV to carry and deliver gRNA(s). The endoribonuclease Csy4 effectively releases gRNAs that function efficiently in Cas9-mediated genome editing. Genome editing of endogenous phytoene desaturase (PDS) loci and exogenous 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) sequence in Nicotiana. benthamiana (N. benthamiana) through CCAC was confirmed using Sanger sequencing. Furthermore, CCAC-induced mutagenesis in two soybean endogenous GW2 paralogs was detected. CONCLUSIONS With the aid of the CCAC system, the target-specific gRNA(s) can be easily manipulated and efficiently delivered into soybean plant cells by viral infection. This is the first virus-based gRNA delivery system for soybean for genome editing and can be used for gene function study and trait improvement.
Collapse
Affiliation(s)
- Yanjie Luo
- London Research and Development Centre, Agriculture and Agri-Food Canada, N5V 4T3 London, ON Canada
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031 China
| | - Julia S. Nowak
- London Research and Development Centre, Agriculture and Agri-Food Canada, N5V 4T3 London, ON Canada
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qing Shi Lu
- London Research and Development Centre, Agriculture and Agri-Food Canada, N5V 4T3 London, ON Canada
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031 China
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, N5V 4T3 London, ON Canada
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, N5V 4T3 London, ON Canada
| |
Collapse
|
14
|
Jensen ED, Laloux M, Lehka BJ, Pedersen LE, Jakočiūnas T, Jensen M, Keasling J. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res 2021; 49:e88. [PMID: 34107026 PMCID: PMC8421215 DOI: 10.1093/nar/gkab472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker's yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.
Collapse
Affiliation(s)
- Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marcos Laloux
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tadas Jakočiūnas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
15
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
16
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
17
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
18
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
19
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
21
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
22
|
Li M, Klungland A. Modifications and interactions at the R-loop. DNA Repair (Amst) 2020; 96:102958. [PMID: 32961406 DOI: 10.1016/j.dnarep.2020.102958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
R-loops are tripartite structures consisting of an RNA:DNA hybrid and a displaced single-stranded DNA [1]. They are widespread and occupy up to 5 % of the mammalian genomes [2]. R-loops have a key role in genome stability, and known functions associated with gene regulation, DNA replication, chromatin patterning, immunoglobuline gene recombination and DNA Double-strand break repair [3-7]. Novel methodology, including the application of the S9.6 antibody, have more recently led to detailed knowledge on the genome-wide distribution of the R-loops as well as the identification of the R-loop interactome [8-10]. The regulation of R-loops was recently shown to also depend on dynamic RNA-methylation, including METTL3/14 dependent 6-methylAdenines (m6As) and METTL8 dependent 3-methylCytosines (m3Cs) [11-13].
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
23
|
|
24
|
Elfman J, Pham LP, Li H. The relationship between chimeric RNAs and gene fusions: Potential implications of reciprocity in cancer. J Genet Genomics 2020; 47:341-348. [PMID: 33008771 DOI: 10.1016/j.jgg.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Justin Elfman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA.
| |
Collapse
|
25
|
Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer. Cancer Sci 2020; 111:1443-1451. [PMID: 32232911 PMCID: PMC7226179 DOI: 10.1111/cas.14404] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
DNA double‐strand break (DSB) is a serious type of DNA damage and is known to trigger multiple responses within cells. In these responses, novel relationships among DSB, DSB repair, and transcription machineries are created. First, transcription is repressed if DSB occurs near or at the transcription site, termed DSB‐induced transcriptional repression, which contributes to DSB repair with the aid of DNA damage‐signaling pathways, ATM‐ or DNA‐PKcs‐signaling pathways. DSB‐induced transcriptional repression is also regulated by transcriptional factors TLP1, NELF, and ENL, as well as chromatin remodeling and organizing factors ZMYND8, CDYL1, PBAF, and cohesin. Second, transcription and RNA promote DSB repair for genome integrity. Transcription factors such as LEDGF, SETD2, and transcriptionally active histone modification, H3K36, facilitate homologous recombination to overcome DSB. At transcriptional active sites, DNA:RNA hybrids, termed R‐loops, which are formed by DSB, are processed by RAD52 and XPG leading to an activation of the homologous recombination pathway. Even in a transcriptionally inactive non‐genic sites, noncoding RNAs that are produced by RNA polymerase II, DICER, and DROSHA, help to recruit DSB repair proteins at the DSB sites. Third, transcriptional activation itself, however, can induce DSB. Transcriptional activation often generates specific DNA structures such as R‐loops and topoisomerase‐induced DSBs, which cause genotoxic stress and may lead to genome instability and consequently to cancer. Thus, transcription and DSB repair machineries interact and cooperate to prevent genome instability and cancer.
Collapse
Affiliation(s)
- Ayako Ui
- Genome Regulation and Molecular Pharmacogenomics, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachijoji, Japan.,Department of Molecular Oncology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.,Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
26
|
Ghosh S, Goldgur Y, Shuman S. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO-POL enzyme. Nucleic Acids Res 2020; 48:3165-3180. [PMID: 32034423 PMCID: PMC7102940 DOI: 10.1093/nar/gkaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5' exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3'-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain-especially the O helix-to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3' exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO-POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
27
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
28
|
Wu H, Li X, Li H. Gene fusions and chimeric RNAs, and their implications in cancer. Genes Dis 2019; 6:385-390. [PMID: 31832518 PMCID: PMC6889028 DOI: 10.1016/j.gendis.2019.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Gene fusions are appreciated as ideal cancer biomarkers and therapeutic targets. Chimeric RNAs are traditionally thought to be products of gene fusions, and thus, also cancer-specific. Recent research has demonstrated that chimeric RNAs can be generated by intergenic splicing in the absence of gene fusion, and such chimeric RNAs are also found in normal physiology. These new findings challenge the traditional theory of chimeric RNAs exclusivity to cancer, and complicates use of chimeric RNAs in cancer detection. Here, we provide an overview of gene fusions and chimeric RNAs, and emphasize their differences. We note that gene fusions are able to generate chimeric RNAs in accordance with the central dogma of biology, and that chimeric RNAs may also be able to influence the generation of the gene fusions per the “horse before the cart” hypothesis. We further expand upon the “horse before the cart” hypothesis, summarizing current evidence in support of the theory and exploring its potential impact on the field.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- Corresponding author. Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. Fax: +1 434 2437244. http://lilab.medicine.virginia.edu
| |
Collapse
|
29
|
Jalan M, Olsen KS, Powell SN. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel) 2019; 11:E1038. [PMID: 31340507 PMCID: PMC6679097 DOI: 10.3390/cancers11071038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The maintenance of genome integrity is critical for cell survival. Homologous recombination (HR) is considered the major error-free repair pathway in combatting endogenously generated double-stranded lesions in DNA. Nevertheless, a number of alternative repair pathways have been described as protectors of genome stability, especially in HR-deficient cells. One of the factors that appears to have a role in many of these pathways is human RAD52, a DNA repair protein that was previously considered to be dispensable due to a lack of an observable phenotype in knock-out mice. In later studies, RAD52 deficiency has been shown to be synthetically lethal with defects in BRCA genes, making RAD52 an attractive therapeutic target, particularly in the context of BRCA-deficient tumors.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Olsen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
30
|
Richard P, Ogami K, Chen Y, Feng S, Moresco JJ, Yates JR, Manley JL. NRDE-2, the human homolog of fission yeast Nrl1, prevents DNA damage accumulation in human cells. RNA Biol 2018; 15:868-876. [PMID: 29902117 DOI: 10.1080/15476286.2018.1467180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RNA helicase Mtr4 is a versatile protein that is a crucial component of several distinct RNA surveillance complexes. Here we describe a novel complex that contains Mtr4, but has a role distinct from any of those previously described. We found that Mtr4 association with the human homolog of fission yeast Nrl1, NRDE-2, defines a novel function for Mtr4 in the DNA damage response pathway. We provide biochemical evidence that Mtr4 and NRDE-2 are part of the same complex and show that both proteins play a role in the DNA damage response by maintaining low DNA double-strand break levels. Importantly, the DNA damage response function of the Mtr4/NRDE-2 complex does not depend on the formation of R loops. We show however that NRDE-2 and Mtr4 can affect R-loop signals at a subset of distinct genes, possibly regulating their expression. Our work not only expands the wide range of Mtr4 functions, but also elucidates an important role of the less characterized human NRDE-2 protein.
Collapse
Affiliation(s)
- Patricia Richard
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Koichi Ogami
- a Department of Biological Sciences , Columbia University , New York , NY , USA.,b Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya , Japan
| | - Yaqiong Chen
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Shuang Feng
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - James J Moresco
- c Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - John R Yates
- c Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - James L Manley
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
31
|
Strategies for In Vivo Genome Editing in Nondividing Cells. Trends Biotechnol 2018; 36:770-786. [PMID: 29685818 DOI: 10.1016/j.tibtech.2018.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
Programmable nucleases, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have enhanced our ability to edit genomes by the sequence-specific generation of double-strand breaks (DSBs) with subsequent homology-directed repair (HDR) of the DSB. However, the efficiency of the HDR pathway is limited in nondividing cells, which encompass most of the cells in the body. Therefore, the HDR-mediated genome-editing approach has limited in vivo applicability. Here, we discuss a mutation type-oriented viewpoint of strategies devised over the past few years to circumvent this problem, along with their possible applications and limitations.
Collapse
|
32
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
33
|
McDevitt S, Rusanov T, Kent T, Chandramouly G, Pomerantz RT. How RNA transcripts coordinate DNA recombination and repair. Nat Commun 2018; 9:1091. [PMID: 29545568 PMCID: PMC5854605 DOI: 10.1038/s41467-018-03483-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic studies in yeast indicate that RNA transcripts facilitate homology-directed DNA repair in a manner that is dependent on RAD52. The molecular basis for so-called RNA−DNA repair, however, remains unknown. Using reconstitution assays, we demonstrate that RAD52 directly cooperates with RNA as a sequence-directed ribonucleoprotein complex to promote two related modes of RNA−DNA repair. In a RNA-bridging mechanism, RAD52 assembles recombinant RNA−DNA hybrids that coordinate synapsis and ligation of homologous DNA breaks. In an RNA-templated mechanism, RAD52-mediated RNA−DNA hybrids enable reverse transcription-dependent RNA-to-DNA sequence transfer at DNA breaks that licenses subsequent DNA recombination. Notably, we show that both mechanisms of RNA−DNA repair are promoted by transcription of a homologous DNA template in trans. In summary, these data elucidate how RNA transcripts cooperate with RAD52 to coordinate homology-directed DNA recombination and repair in the absence of a DNA donor, and demonstrate a direct role for transcription in RNA−DNA repair. Homologous recombination (HR) typically uses DNA as a donor template to accurately repair DNA breaks. Here, the authors elucidate two mechanisms by which RAD52 uses RNA as a template for HR: one involving RNA-mediated synapsis of a homologous DNA break, and the other involving reverse transcriptase dependent RNA-to-DNA sequence transfer at DNA breaks.
Collapse
Affiliation(s)
- Shane McDevitt
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Timur Rusanov
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tatiana Kent
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Gurushankar Chandramouly
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Richard T Pomerantz
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C, Gasparutto D, Chon H, Crouch RJ, Storici F, Tell G. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res 2017; 45:11193-11212. [PMID: 28977421 PMCID: PMC5737539 DOI: 10.1093/nar/gkx723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoside 5′-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excision repair (BER) pathway is mainly responsible for repairing oxidized and abasic sites into DNA. Here we show that human RNase H2 is unable to process an abasic rNMP (rAP site) or a ribose 8oxoG (r8oxoG) site embedded in DNA. On the contrary, we found that recombinant purified human apurinic/apyrimidinic endonuclease-1 (APE1) and APE1 from human cell extracts efficiently process an rAP site in DNA and have weak endoribonuclease and 3′-exonuclease activities on r8oxoG substrate. Using biochemical assays, our results provide evidence of a human enzyme able to recognize and process abasic and oxidized ribonucleotides embedded in DNA.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| | - Kyung Duk Koh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,University of California, San Francisco, UCSF, School of Medicine, San Francisco, CA, USA
| | - Christine Saint-Pierre
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Didier Gasparutto
- Chimie Reconnaissance & Etude Assemblages Biologiques, Université Grenoble Alpes, SPrAM UMR5819 CEA CNRS UGA, INAC/CEA, Grenoble, France
| | - Hyongi Chon
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Developmental Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
35
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
36
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
37
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
38
|
Nishida K, Kuwano Y, Nishikawa T, Masuda K, Rokutan K. RNA Binding Proteins and Genome Integrity. Int J Mol Sci 2017; 18:E1341. [PMID: 28644387 PMCID: PMC5535834 DOI: 10.3390/ijms18071341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023] Open
Abstract
Genome integrity can be threatened by various endogenous or exogenous events. To counteract these stressors, the DNA damage response network contributes to the prevention and/or repair of genomic DNA damage and serves an essential function in cellular survival. DNA binding proteins are involved in this network. Recently, several RNA-binding proteins (RBPs) that are recruited to DNA damage sites have been shown to be direct players in the prevention or repair of DNA damage. In addition, non-coding RNAs, themselves, are involved in the RNA-mediated DNA repair system. Furthermore, RNA modification such as m6A methylation might also contribute to the ultraviolet-responsive DNA damage response. Accumulating evidence suggests that RNA metabolism is more deeply involved in diverse cellular functions than previously expected, and is also intricately associated with the maintenance of genome integrity. In this review, we highlight the roles of RBPs in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| |
Collapse
|
39
|
Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Hui Li
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
- Department of Biochemistry and Molecular Genetics, School of Medicine; University of Virginia; Charlottesville VA USA
| |
Collapse
|
40
|
Bhattacharjee S, Nandi S. Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 2016; 5:45. [PMID: 27921283 PMCID: PMC5136664 DOI: 10.1186/s40169-016-0128-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genome is under constant assault from a multitude of sources that can lead to the formation of DNA double-stand breaks (DSBs). DSBs are cytotoxic lesions, which if left unrepaired could lead to genomic instability, cancer and even cell death. However, erroneous repair of DSBs can lead to chromosomal rearrangements and loss of heterozygosity, which in turn can also cause cancer and cell death. Hence, although the repair of DSBs is crucial for the maintenance of genome integrity the process of repair need to be well regulated and closely monitored. Main body The two most commonly used pathways to repair DSBs in higher eukaryotes include non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is considered to be error-prone, intrinsically mutagenic quick fix remedy to seal together the broken DNA ends and restart replication. In contrast, HR is a high-fidelity process that has been very well conserved from phage to humans. Here we review HR and its sub-pathways. We discuss what factors determine the sub pathway choice including etiology of the DSB, chromatin structure at the break site, processing of the DSBs and the mechanisms regulating the sub-pathway choice. We also elaborate on the potential of targeting HR genes for cancer therapy and anticancer strategies. Conclusion The DNA repair field is a vibrant one, and the stage is ripe for scrutinizing the potential treatment efficacy and future clinical applications of the pharmacological inhibitors of HR enzymes as mono- or combinatorial therapy regimes. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
41
|
DEAD Box 1 Facilitates Removal of RNA and Homologous Recombination at DNA Double-Strand Breaks. Mol Cell Biol 2016; 36:2794-2810. [PMID: 27550810 DOI: 10.1128/mcb.00415-16] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Although RNA and RNA-binding proteins have been linked to double-strand breaks (DSBs), little is known regarding their roles in the cellular response to DSBs and, if any, in the repair process. Here, we provide direct evidence for the presence of RNA-DNA hybrids at DSBs and suggest that binding of RNA to DNA at DSBs may impact repair efficiency. Our data indicate that the RNA-unwinding protein DEAD box 1 (DDX1) is required for efficient DSB repair and cell survival after ionizing radiation (IR), with depletion of DDX1 resulting in reduced DSB repair by homologous recombination (HR). While DDX1 is not essential for end resection, a key step in homology-directed DSB repair, DDX1 is required for maintenance of the single-stranded DNA once generated by end resection. We show that transcription deregulation has a significant effect on DSB repair by HR in DDX1-depleted cells and that RNA-DNA duplexes are elevated at DSBs in DDX1-depleted cells. Based on our combined data, we propose a role for DDX1 in resolving RNA-DNA structures that accumulate at DSBs located at sites of active transcription. Our findings point to a previously uncharacterized requirement for clearing RNA at DSBs for efficient repair by HR.
Collapse
|
42
|
Chakraborty A, Tapryal N, Venkova T, Horikoshi N, Pandita RK, Sarker AH, Sarkar PS, Pandita TK, Hazra TK. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 2016; 7:13049. [PMID: 27703167 PMCID: PMC5059474 DOI: 10.1038/ncomms13049] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. Most adult mammalian cells prefer to repair double-strand DNA breaks though the classical nonhomologous end-joining pathway. Here the authors present evidence that a nascent RNA transcript can serve as a template to facilitate error-free repair.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Nisha Tapryal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Tatiana Venkova
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Altaf H Sarker
- Division of Life Sciences, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Partha S Sarkar
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
43
|
Abstract
Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry." I have had the remarkable good fortune to profit from the development of new techniques that have permitted an ever more detailed dissection of these repair mechanisms, which are described here.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453;
| |
Collapse
|
44
|
Abstract
Understanding the molecular mechanisms behind the capacity of cancer cells to adapt to the tumor microenvironment and to anticancer therapies is a major challenge. In this context, cancer is believed to be an evolutionary process where random mutations and the selection process shape the mutational pattern and phenotype of cancer cells. This article challenges the notion of randomness of some cancer-associated mutations by describing molecular mechanisms involving stress-mediated biogenesis of mRNA-derived small RNAs able to target and increase the local mutation rate of the genomic loci they originate from. It is proposed that the probability of some mutations at specific loci could be increased in a stress-specific and RNA-depending manner. This would increase the probability of generating mutations that could alleviate stress situations, such as those triggered by anticancer drugs. Such a mechanism is made possible because tumor- and anticancer drug-associated stress situations trigger both cellular reprogramming and inflammation, which leads cancer cells to express molecular tools allowing them to “attack” and mutate their own genome in an RNA-directed manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, Lyon, France
| |
Collapse
|
45
|
Abstract
Cells are continuously exposed to both endogenous and exogenous sources of genomic stress. To maintain chromosome stability, a variety of mechanisms have evolved to cope with the multitude of genetic abnormalities that can arise over the life of a cell. Still, failures to repair these lesions are the driving force of cancers and other degenerative disorders. DNA double-strand breaks (DSBs) are among the most toxic genetic lesions, inhibiting cell ability to replicate, and are sites of mutations and chromosomal rearrangements. DSB repair is known to proceed via two major mechanisms: homologous recombination (HR) and non-homologous end joining (NHEJ). HR reliance on the exchange of genetic information between two identical or nearly identical DNA molecules offers increased accuracy. While the preferred substrate for HR in mitotic cells is the sister chromatid, this is limited to the S and G2 phases of the cell cycle. However, abundant amounts of homologous genetic substrate may exist throughout the cell cycle in the form of RNA. Considered an uncommon occurrence, the direct transfer of information from RNA to DNA is thought to be limited to special circumstances. Studies have shown that RNA molecules reverse transcribed into cDNA can be incorporated into DNA at DSB sites via a non-templated mechanism by NHEJ or a templated mechanism by HR. In addition, synthetic RNA molecules can directly template the repair of DSBs in yeast and human cells via an HR mechanism. New work suggests that even endogenous transcript RNA can serve as a homologous template to repair a DSB in chromosomal DNA. In this perspective, we will review and discuss the recent advancements in DSB repair by RNA via non-templated and templated mechanisms. We will provide current findings, models and future challenges investigating RNA and its role in DSB repair.
Collapse
Affiliation(s)
- Chance Meers
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
46
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
47
|
Abstract
The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.
Collapse
Affiliation(s)
- Havva Keskin
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| | - Chance Meers
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| | - Francesca Storici
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| |
Collapse
|
48
|
Feng S, Cao Z. Is the role of human RNase H2 restricted to its enzyme activity? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 121:66-73. [PMID: 26603688 DOI: 10.1016/j.pbiomolbio.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
In human cells, ribonuclease (RNase) H2 complex is the predominant source of RNase H activities with possible roles in nucleic acid metabolism to preserve genome stability and to prevent immune activation. Dysfunction mutations in any of the three subunits of human RNase H2 complex can result in embryonic/perinatal lethality or cause Aicardi-Goutières syndrome (AGS). Most recently, increasing findings have shown that human RNase H2 proteins play roles beyond the RNase H2 enzymatic activities in health and disease. Firstly, the biochemical and structural properties of human RNase H2 proteins allow their interactions with various partner proteins that may support functions other than RNase H2 enzymatic activities. Secondly, the disparities of clinical presentations of AGS with different AGS-mutations and the biochemical and structural analysis of AGS-mutations, especially the results from both AGS-knockin and RNase H2-null mouse models, suggest that human RNase H2 complex has certain cellular functions beyond the RNase H2 enzymatic activities to prevent the innate-immune-mediated inflammation. Thirdly, the subunit proteins RNASEH2A and RNASEH2B respectively, not related to the RNase H2 enzymatic activities, have been shown to play a certain role in the pathophysiological processes of different cancer types. In this minireview, we aims to provide a brief overview of the most recent investigations into the biological functions of human RNase H2 proteins and the underlying mechanisms of their actions, emphasizing on the new insights into the roles of human RNase H2 proteins playing beyond the RNase H2 enzymatic activities in health and disease.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Zhaohui Cao
- The School of Pharmacy and Life Sciences, University of South China, Hengyang 421001, China
| |
Collapse
|
49
|
Khoury-Haddad H, Nadar-Ponniah PT, Awwad S, Ayoub N. The emerging role of lysine demethylases in DNA damage response: dissecting the recruitment mode of KDM4D/JMJD2D to DNA damage sites. Cell Cycle 2015; 14:950-8. [PMID: 25714495 PMCID: PMC4614868 DOI: 10.1080/15384101.2015.1014147] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
KDM4D is a lysine demethylase that removes tri- and di- methylated residues from H3K9 and is involved in transcriptional regulation and carcinogenesis. We recently showed that KDM4D is recruited to DNA damage sites in a PARP1-dependent manner and facilitates double-strand break repair in human cells. Moreover, we demonstrated that KDM4D is an RNA binding protein and mapped its RNA-binding motifs. Interestingly, KDM4D-RNA interaction is essential for its localization on chromatin and subsequently for efficient demethylation of its histone substrate H3K9me3. Here, we provide new data that shed mechanistic insights into KDM4D accumulation at DNA damage sites. We show for the first time that KDM4D binds poly(ADP-ribose) (PAR) in vitro via its C-terminal region. In addition, we demonstrate that KDM4D-RNA interaction is required for KDM4D accumulation at DNA breakage sites. Finally, we discuss the recruitment mode and the biological functions of additional lysine demethylases including KDM4B, KDM5B, JMJD1C, and LSD1 in DNA damage response.
Collapse
Affiliation(s)
| | | | - Samah Awwad
- Department of Biology; Israel Institute of Technology; Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology; Israel Institute of Technology; Haifa, Israel
| |
Collapse
|
50
|
Chiu HC, Koh KD, Evich M, Lesiak AL, Germann MW, Bongiorno A, Riedo E, Storici F. RNA intrusions change DNA elastic properties and structure. NANOSCALE 2014; 6:10009-17. [PMID: 24992674 DOI: 10.1039/c4nr01794c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The units of RNA, termed ribonucleoside monophosphates (rNMPs), have been recently found as the most abundant defects present in DNA. Despite the relevance, it is largely unknown if and how rNMPs embedded in DNA can change the DNA structure and mechanical properties. Here, we report that rNMPs incorporated in DNA can change the elastic properties of DNA. Atomic force microscopy (AFM)-based single molecule elasticity measurements show that rNMP intrusions in short DNA duplexes can decrease--by 32%--or slightly increase the stretch modulus of DNA molecules for two sequences reported in this study. Molecular dynamics simulations and nuclear magnetic resonance spectroscopy identify a series of significant local structural alterations of DNA containing embedded rNMPs, especially at the rNMPs and nucleotide 3' to the rNMP sites. The demonstrated ability of rNMPs to locally alter DNA mechanical properties and structure may help in understanding how such intrusions impact DNA biological functions and find applications in structural DNA and RNA nanotechnology.
Collapse
Affiliation(s)
- Hsiang-Chih Chiu
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | | | | | | | | | |
Collapse
|