1
|
Kollayan BY, Cansiz D, Beler M, Unal I, Emekli-Alturfan E, Yalcinkaya SE. Effects of low-dose ionizing radiation on the molecular pathways linking neurogenesis and autism spectrum disorders in zebrafish embryos. Drug Chem Toxicol 2024; 47:960-973. [PMID: 38384198 DOI: 10.1080/01480545.2024.2318444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.
Collapse
Affiliation(s)
- Burcu Yeliz Kollayan
- Institute of Health Sciences, Department of Oral and Maxillofacial Radiology, Marmara University, Istanbul, Turkey
| | - Derya Cansiz
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ismail Unal
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Sebnem Ercalik Yalcinkaya
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Liu X, Song J, Yan X, Li P, Zhang J, Wang B, Si J, Chen Y. N-nitrosodimethylamine exposure to zebrafish embryos/larvae causes cardiac and spinal developmental toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109823. [PMID: 38158031 DOI: 10.1016/j.cbpc.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
N-nitrosodimethylamine (NDMA), one of the new nitrogen-containing disinfection by-products, is potentially cytotoxic, genotoxic, and carcinogenic. Its potential toxicological effects have attracted a wide range of attention, but the mechanism is still not sufficiently understood. To better understand the toxicological mechanisms of NDMA, zebrafish embryos were exposed to NDMA from 3 h post-fertilization (hpf) to 120hpf. Mortality and malformation were significantly increased, and hatching rate, heart rate, and swimming behavior were decreased in the exposure groups. The result indicated that NDMA exposure causes cardiac and spinal developmental toxicity. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, and bcl-2 were significantly affected by NDMA exposure. Moreover, the genes associated with spinal and cardiac development (myh6, myh7, nkx2.5, eph, bmp2b, bmp4, bmp9, run2a, and run2b) were significantly downregulated after treatment with NDMA. Wnt and TGF-β signaling pathways, crucial for the development of diverse tissues and organs in the embryo and the establishment of the larval spine, were also significantly disturbed by NDMA treatment. In summary, the disinfection by-product, NDMA, exhibits spinal and cardiac developmental toxicity in zebrafish embryos, providing helpful information for comprehensive analyses and a better understanding the mechanism of its toxicity.
Collapse
Affiliation(s)
- Xiaoyi Liu
- College of Life Science, Lanzhou University, Lanzhou, China. https://twitter.com/@LanoLiu41230
| | - Jinge Song
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaotao Yan
- Lanzhou Urban Water Supply (Group) Co., Ltd, Lanzhou, China
| | - Pingping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Lanzhou Urban Water Supply (Group) Co., Ltd, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Chen
- College of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Qiao Y, Zhou Y, Zhang X, Faulkner S, Liu H, Wang L. Toxic effects of triphenyltin on the development of zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163783. [PMID: 37146813 DOI: 10.1016/j.scitotenv.2023.163783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Triphenyltin (TPT) is known to be an environmental endocrine disruptor and has adverse effects on aquatic animals. In this study, zebrafish embryos were treated with three different concentrations (12.5, 25, 50 nmol/L) based on the LC50 value at 96 h post fertilization (96 hpf), after TPT exposure. The developmental phenotype and hatchability were observed and recorded. Reactive oxygen species (ROS) levels in zebrafish were detected at 72 hpf and 96 hpf using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) as a probe. The number of neutrophils after exposure was observed using transgenic zebrafish Tg (lyz: DsRed). RNA-seq analysis was used to compare the gene expression changes in zebrafish embryos at 96 hpf in the control group and 50 nmol/L TPT exposure group. The data revealed that TPT caused a delay in hatching of zebrafish embryos in a time- and dose-dependent manner, as well as causing pericardial edema, spinal curvature and melanin reduction. ROS levels in embryos exposed to TPT increased, and the number of neutrophils increased after TPT exposure to Tg (lyz: DsRed) in transgenic zebrafish. RNA-seq results were also analyzed, and KEGG enrichment analysis showed that significant differential genes were enriched in the PPAR signaling pathway (P < 0.05), and the PPAR signaling pathway mainly affected genes related to lipid metabolism. The RNA-seq results were verified using real-time fluorescence quantitative PCR (RT-qPCR). Oil red O and Nile red staining showed increased lipid accumulation after TPT exposure. These findings suggest that TPT affects the development of zebrafish embryos even at relatively low concentrations.
Collapse
Affiliation(s)
- Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2035, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
4
|
Cheng HL, Lee SC, Chang-Chien J, Su TR, Yang JJ, Su CC. Protective mechanism of ferulic acid against neomycin-induced ototoxicity in zebrafish. ENVIRONMENTAL TOXICOLOGY 2023; 38:604-614. [PMID: 36367326 DOI: 10.1002/tox.23707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ototoxicity refers to damage of sensory hair cells and functional hearing impairment following aminoglycosides exposure. Previously, we have determined that ferulic acid (FA) protected hair cells against serial concentrations of neomycin-induced ototoxic damage. The aim of the present study is to assess the mechanism and effects of FA on neomycin-induced hair cells loss and impact on mechanosensory-mediated behaviors alteration using transgenic zebrafish (pvalb3b: TagGFP). We first identified the optimal protective condition as pre/co-treatment method in early fish development. Pretreatment of the larvae with FA significantly protected against neomycin-induced hair cells loss through preventing neomycin passed through the cytoplasm of hair cells, and subsequently decreased reactive oxygen species production and TUNEL signals in 4 day post-fertilization (dpf) transgenic zebrafish larvae. Moreover, preservation of functional hair cells correlated directly with rescue of the altered swimming behavior, indicates FA pretreatment protects against neomycin ototoxic damage in 7-dpf transgenic zebrafish larvae. Together, our findings unravel the otoprotective role of FA as an effective agent against neomycin-induced ototoxic effects and offering the theoretical foundation for discovering novel candidates for hearing protection.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shan-Chih Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ju Chang-Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Rong Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ching-Chyuan Su
- Dean chamber, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
- Department of Beauty Science, Meiho University, Pingtung, Taiwan
| |
Collapse
|
5
|
Chen Q, Zhang J, Wang Y, Wang R, Hao X, Wang R, Zheng Y, An X, Qi J. Feruloyl oligosaccharides, isolated from bacterial fermented wheat bran, exhibit antioxidant effects in IPEC-J2 cells and zebrafish model. Food Sci Nutr 2023; 11:295-306. [PMID: 36655114 PMCID: PMC9834851 DOI: 10.1002/fsn3.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023] Open
Abstract
Feruloyl oligosaccharides (FOs) were produced by solid-state fermentation of wheat bran using Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae, and its antioxidant activity was investigated using IPEC-J2 cells and zebrafish embryo model. Preliminary structure analysis revealed that FOs has an average molecular weight of 11.81 kDa and consists of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose, and fucose. The obtained FOs possess superior reducing power and DPPH and hydroxyl free radical scavenging activities. In IPEC-J2 cells, antioxidant enzymes activities and GSH level were significantly increased, while MDA level was reduced by FOs. Further studies showed that FOs achieved the aforementioned effects by activating Nrf2 signaling pathway. In zebrafish embryo, FOs effectively suppressed ROS production, lipid peroxidation, and cell death by increasing SOD and GSH-Px activities. Our findings suggested that FOs from solid-state fermented wheat bran with mixed bacteria can be used as an antioxidant food additive or drugs.
Collapse
Affiliation(s)
- Qiuyan Chen
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Jia Zhang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Yuan Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Ruifang Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Xiran Hao
- Kailu County Animal Husbandry and Fisheries WorkstationTongliaoChina
| | - Ruxin Wang
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
| | - Yue Zheng
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Xiaoping An
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| | - Jingwei Qi
- College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research CenterHohhotChina
- Key Laboratory of Smart Animal HusbandryInner Mongolia Department of EducationHohhotChina
| |
Collapse
|
6
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
7
|
Xu L, Huang H, Liu T, Yang T, Yi X. Exposure to X-rays Causes Depression-like Behaviors in Mice via HMGB1-mediated Pyroptosis. Neuroscience 2021; 481:99-110. [PMID: 34800578 DOI: 10.1016/j.neuroscience.2021.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
The widespread application of ionizing radiation in industrial and medical fields leads to the increased brain exposure to X-rays. Radiation brain injury (RBI) seriously affects health of patients by causing cognitive dysfunction and neuroinflammation. However, the link between X-ray exposure and depressive symptoms and their detailed underlying mechanisms have not been well studied. Herein, we investigated the potential depression-like behaviors in mice exposed to X-rays and then explored the role of HMGB1 in this injury. We found that X-ray stimulation induced the generation of reactive oxygen species (ROS) in the prefrontal cortex in a dose-dependent manner, leading to the occurrence of depression-like behaviors of the mice. Moreover, X-ray exposure increased the expression of HMGB1, activated NLRP3 inflammasome signaling pathway and microglial cells, and then facilitated the release of pro-inflammatory cytokines, resulting in the pyroptosis and neuron loss both in vivo and in vitro. Additionally, glycyrrhizin (Gly), which is a HMGB1 inhibitor, reversed X-ray-induced behavioral changes and neuronal damage. Our findings indicated that HMGB1-mediated pyroptosis was involved in radiation-induced depression.
Collapse
Affiliation(s)
- Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tao Yang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
8
|
Gu J, Yan M, Leung PTY, Tian L, Lam VTT, Cheng SH, Lam PKS. Toxicity effects of hydrophilic algal lysates from Coolia tropicalis on marine medaka larvae (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105787. [PMID: 33677168 DOI: 10.1016/j.aquatox.2021.105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Coolia tropicalis is a species of benthic and epiphytic toxic algae, which can produce phycotoxins that intoxicate marine fauna. In this study, the potential toxic effects of C. tropicalis on fish were investigated using larval marine medaka (Oryzias melastigma) as a model to evaluate fish behavior, physiological performance, and stress-induced molecular responses to exposure to two sublethal concentrations (LC10 and LC20) of hydrophilic algal lysates. Exposure to C. tropicalis lysates inhibited swimming activity, activated spontaneous undirected locomotion, altered nerve length ration, and induced early development abnormalities, such as shorter eye diameter, body as well as axon length. Consistent with these abnormalities, changes in the expression of genes associated with apoptosis (CASPASE-3 and BCL-2), the inflammatory response (IL-1β and COX-2), oxidative stress (SOD), and energy metabolism (ACHE and VHA), were also observed. This study advances our understanding of the mechanisms of C. tropicalis toxicity in marine fish in the early life stages and contributes to future ecological risk assessments of toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Li Tian
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
9
|
Chen Q, Wang R, Wang Y, An X, Liu N, Song M, Yang Y, Yin N, Qi J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Rabou MAA, Naga NAAE, Eid FA. Effect of Transplanted Bone Marrow on Kidney Tissue of γ-Irradiated Pregnant Rats and Their Fetuses. Pak J Biol Sci 2020; 23:92-102. [PMID: 31930887 DOI: 10.3923/pjbs.2020.92.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES The damaging effects of ionizing radiation lead to cell death. The present study was performed to assess the possible ameliorating effects of bone marrow transplantation (BMT) on the histopathological and histochemical changes in the kidney tissue of γ-irradiated pregnant rats and their fetuses. MATERIALS AND METHODS Pregnant rats were divided into 5 sets (6 females in each set): Group C (untreated pregnant rats), group R7 (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy), group R7+BM (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy then injected by freshly BMT (75×106±5 cells) intra peritoneally after 1 h of irradiation, group R14 (pregnant rats exposed to 2Gy of γ-rays on the 14th day of pregnancy), group R14+BM (pregnant rats exposed to 2Gy γ-rays on the 14th day of pregnancy and after 1 h received 1 dose of BMT). All pregnant rats were sacrificed on the 20th day of pregnancy and kidney samples of pregnant rats and their fetuses were removed for histopathological and histochemical studies. RESULTS Gamma rays caused many histological and histochemical deviations in the kidney tissue of mothers and their fetuses on day 7 or 14 of gestation, but bone marrow transplantation highly improved the damage were occurred due to γ-rays. CONCLUSION Bone marrow transplantation has the ability to decrease the injury of gamma rays.
Collapse
|
11
|
Icoglu Aksakal F, Ciltas A. Developmental toxicity of penconazole in Zebrfish (Danio rerio) embryos. CHEMOSPHERE 2018; 200:8-15. [PMID: 29471168 DOI: 10.1016/j.chemosphere.2018.02.094] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Penconazole is a widely used fungicide that is toxic to a variety of organisms including fish. In the present study, we investigated the developmental toxicity of penconazole on zebrafish embryos by exposing to different concentrations of penconazole (0.8, 1.6 and 2.4 mg/L) from 4-h post-fertilization (hpf). Hatching, survival, and heart rates, body length, malformation and expression of several genes were detected. The results showed that penconazole exposure induced developmental toxicity, including delayed hatching, reduced survival, and heart rate. In addition to this, exposure to penconazole caused malformations, including pericardial edema, yolk sac edema, axial malformation, tail malformation and spinal curvature. Furthermore, RT-PCR results showed that mRNA levels of antioxidant genes were down-regulated after penconazole exposure. On the other hand, mRNA levels of interleukin 1 beta and interferon in embryos were up-regulated after exposure to penconazole. In summary, our data indicated that penconazole cause embryonic development toxicity on zebrafish embryos.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
12
|
Li X, Zha X, Wang Y, Jia R, Hu B, Zhao B. Toxic effects and foundation of proton radiation on the early-life stage of zebrafish development. CHEMOSPHERE 2018; 200:302-312. [PMID: 29494911 DOI: 10.1016/j.chemosphere.2018.02.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Proton is a major particle of space radiation environment and a prospective radiotherapy beam. However, its risk needs to be fully evaluated for the understanding and to establish the better protective strategy for astronaut and patient. Zebrafish is an ideal model for the toxicity studies on medicines and environmental genetic toxicants. In the current study, embryos of zebrafish at 24 h post-fertilization (hpf) were exposed to proton beam. Some toxic parameters of embryo-larval development were investigated. Microarray combining with qRT-PCR were used to detect the gene expression situation. Generally, fractions of a variety of abnormal phenotypes of embryos and larvae increased in a dose-dependent manner after irradiation. The copy number of mitochondria, the basal respiration rate and the maximum respiration rate of embryos significantly decreased after irradiation. Microarray data demonstrated that MAPK signaling pathway, cell communication, glycolysis and TGF-β signaling pathway were significantly affected in the irradiated group. The expressions of matrix metallopeptidase 9 (mmp9) and TIMP metallopeptidase inhibitor 2b (timp2b) genes, and enzymatic activity of MMP9 were significantly upregulated in irradiated group. Overall, these results suggest that acute radiation of proton severely affects the development of organism and results in aberration occurrence in the early stage of zebrafish development, which may relates to mitochondrial and glycolytic dysfunction.
Collapse
Affiliation(s)
- Xiaoman Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Zha
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Rong Jia
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Burong Hu
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
13
|
Patibandla S, Zhang Y, Tohari AM, Gu P, Reilly J, Chen Y, Shu X. Comparative analysis of the toxicity of gold nanoparticles in zebrafish. J Appl Toxicol 2018; 38:1153-1161. [PMID: 29656436 DOI: 10.1002/jat.3628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/28/2022]
Abstract
The use of nanoparticles - particles that range in size from 1 to 100 nm - has become increasingly prevalent in recent years, bringing with it a variety of potential toxic effects. Zebrafish embryos were exposed during the 3 day postfertilization period to gold nanospheres (GNSs), gold nanorods (GNRs), GNRs coated with polystyrene sulphate (PSS-GNRs) and GNRs coated with both PSS and polyallamine hydrochloride (PAH-PSS-GNRs). All nanorods were stabilized with cetyltrimethylammonium bromide. GNSs were the least toxic of the nanoparticles studied, with exposure resulting in no significant changes in mortality, hatching or heart rate. Exposure to GNRs and PSS-GNRs resulted in significant increases in mortality and significant decreases in hatching and heart rate. Treatment with GNRs caused significant changes in the expression of a variety of oxidative stress genes. The toxic effects of GNRs were ameliorated by coating them with PSS and, to a more marked extent, with a double coating of PSS and polyallamine hydrochloride.
Collapse
Affiliation(s)
- Srinath Patibandla
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Yinan Zhang
- Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK.,College of Physics, Jilin University, Changchun, 130012, China
| | - Ali Mohammad Tohari
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,King Fahad Hospital, Jazan, Saudi Arabia, PO Box 204
| | - Peng Gu
- Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| |
Collapse
|
14
|
Wang Y, Hou Q, Xiao G, Yang S, Di C, Si J, Zhou R, Ye Y, Zhang Y, Zhang H. Selective ATP hydrolysis inhibition in F1Fo ATP synthase enhances radiosensitivity in non-small-cell lung cancer cells (A549). Oncotarget 2017; 8:53602-53612. [PMID: 28881834 PMCID: PMC5581133 DOI: 10.18632/oncotarget.18657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Background F1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung cancer (NSCLC) cells is unknown. Methods and Findings We studied whether ATP hydrolysis affected X-ray radiation induced cell death. NSCLC cells (A549) were pretreated with BTB06584 (BTB), an elective ATP hydrolysis inhibitor, followed by X-ray radiation. Cell viability and clonogenic survival were markedly decreased, clear indications of enhanced radiosensitivity through BTB incubation. Additionally, ATP5α1 was upregulated in parallel with elevated ATP hydrolytic activity after X-ray radiation, showing an increased mitochondrial membrane potential (ΔΨm). ATP hydrolysis inhibition led to collapse of ΔΨm suggesting ATP hydrolytic activity could enhance ΔΨm after X-ray radiation. Furthermore, we also demonstrated that apoptosis was pronounced with the prolonged collapse of ΔΨm due to hydrolysis inhibition by BTB incubation. Conclusion Overall, these findings supported that ATP hydrolysis inhibition could enhance the radiosensitivity in NSCLC cells (A549) after X-ray radiation, which was due to the collapse of ΔΨm.
Collapse
Affiliation(s)
- Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Guoqing Xiao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Shifeng Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| | - Yancheng Ye
- Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China
| | - Yanshan Zhang
- Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China.,CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Lanzhou 730000, Gansu, China.,Gansu Wuwei Tumor Hospital, Department of Science and Technology, Wuwei 733000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Institute of Modern Physics, Lanzhou 730000, Gansu, China
| |
Collapse
|
15
|
Si J, Zhou R, Song J, Gan L, Zhou X, Di C, Liu Y, Mao A, Zhao Q, Wang Y, Zhang H. Toxic effects of 56Fe ion radiation on the zebrafish (Danio rerio) embryonic development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:87-95. [PMID: 28267650 DOI: 10.1016/j.aquatox.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
All living organisms and ecosystems are permanently exposed to ionizing radiation. Of all the types of ionizing radiation, heavy ions such as 56Fe have the potential to cause the most severe biological effects. We therefore examined the effects and potential mechanisms of iron ion irradiation on the induction of developmental toxicity and apoptosis in zebrafish embryos. Zebrafish embryos at 4h post-fertilization (hpf) were divided into five groups: a control group; and four groups irradiated with 0.5, 1, 2, and 4Gy radiation, respectively. Mortality and teratogenesis were significantly increased, and spontaneous movement, heart rate, and swimming distance were decreased in the irradiated groups, accompanied by increased apoptosis. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, bcl-2, and caspase-3, were significantly affected by radiation exposure. Moreover, protein expression levels of P53 and Bcl-2 changed in accordance with the corresponding mRNA expression levels. In addition, we detected the protein expression levels of γ-H2AX, which is a biomarker for radiation-induced DNA double-strand breaks, and found that γ-H2AX protein levels were significantly increased in the irradiated groups. Overall, the results of this study improve our understanding of the mechanisms of iron ion radiation-induced developmental toxicity and apoptosis, potentially involving the induction of DNA damage and mitochondrial dysfunction. The findings of this study may aid future impact assessment of environmental radioactivity in fish.
Collapse
Affiliation(s)
- Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Jing'e Song
- Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Aihong Mao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Gansu Wuwei Institute of Medical Sciences, Wuwei 733000, China.
| |
Collapse
|
16
|
Massarsky A, Kozal JS, Di Giulio RT. Glutathione and zebrafish: Old assays to address a current issue. CHEMOSPHERE 2017; 168:707-715. [PMID: 27836271 PMCID: PMC5182135 DOI: 10.1016/j.chemosphere.2016.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 05/16/2023]
Abstract
Several xenobiotic agents (e.g. metals, polycyclic aromatic hydrocarbons, nanoparticles, etc.) commonly involve the generation of reactive oxygen species (ROS) and oxidative stress as part of their toxic mode of action. Among piscine models, the zebrafish is a popular vertebrate model to study toxicity of various xenobiotic agents. Similarly to other vertebrates, zebrafish possess an extensive antioxidant system, including the reduced form of glutathione (GSH), which is an important antioxidant that acts alone or in conjunction with enzymes, such as glutathione peroxidase (GPx). Upon interaction with ROS, GSH is oxidized, resulting in the formation of glutathione disulfide (GSSG). GSSG is recycled by an auxiliary antioxidant enzyme glutathione reductase (GR). This article outlines detailed methods to measure the concentrations of GSH and GSSG, as well as the activities of GPx and GR in zebrafish larvae as robust and economical means to assess oxidative stress. The studies that have assessed these endpoints in zebrafish and alternative methods are also discussed. We conclude that the availability of these robust and economical methods support the use of zebrafish as a model organism in studies evaluating redox biology, as well as the induction of oxidative stress following exposure to toxic agents.
Collapse
Affiliation(s)
- Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Jordan S Kozal
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
17
|
Chang-Chien J, Yen YC, Li SY, Hsu TC, Yang JJ. Ferulic acid-mediated protection against neomycin-induced hair cell loss in transgenic zebrafish. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Hu M, Hu N, Ding D, Zhao W, Feng Y, Zhang H, Li G, Wang Y. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:441-450. [PMID: 27582010 DOI: 10.1007/s00411-016-0663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Miao Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongfu Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
19
|
Zhou R, Song J, Si J, Zhang H, Liu B, Gan L, Zhou X, Wang Y, Yan J, Zhang Q. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos. Mutat Res 2016; 793-794:41-50. [PMID: 27837686 DOI: 10.1016/j.mrfmmm.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
The inhibitory effects of carbon monoxide (CO), generated by Ru(CO)3Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA damage, and thus inhibiting the activation of P53 and the mitochondrial apoptotic pathway, leading to the attenuation of cell apoptosis and consequently alleviating X-ray irradiation-induced developmental toxicity at lethal and sub-lethal levels.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Jing'e Song
- School/Hospital of stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China.
| | - Bin Liu
- School/Hospital of stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
20
|
Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes. Cell Death Dis 2016; 7:e2397. [PMID: 27711076 PMCID: PMC5133970 DOI: 10.1038/cddis.2016.299] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022]
Abstract
Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/- mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.
Collapse
|
21
|
Wang R, Hua M, Yu Y, Zhang M, Xian QM, Yin DQ. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. CHEMOSPHERE 2016; 147:264-271. [PMID: 26766364 DOI: 10.1016/j.chemosphere.2015.12.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Yang Yu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, 210093, Jiangsu, PR China
| | - Min Zhang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, 210093, Jiangsu, PR China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Da-Qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Félix LM, Vidal AM, Serafim C, Valentim AM, Antunes LM, Campos S, Matos M, Monteiro SM, Coimbra AM. Ketamine-induced oxidative stress at different developmental stages of zebrafish (Danio rerio) embryos. RSC Adv 2016. [DOI: 10.1039/c6ra08298j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The changes induced by ketamine exposure were developmental stage-dependent, and related with the gradual development of the antioxidant defense system of the embryo, which is dependent on changes in energy-sensing pathways.
Collapse
Affiliation(s)
- Luís M. Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Ana M. Vidal
- Life Sciences and Environment School (ECVA)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Cindy Serafim
- Life Sciences and Environment School (ECVA)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Ana M. Valentim
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Luís M. Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Sónia Campos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
- Laboratory Animal Science (LAS)
| | - Manuela Matos
- Biosystems & Integrative Sciences Institute (BioISI)
- Faculty of Sciences
- University of Lisboa
- Lisboa
- Portugal
| | - Sandra M. Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| | - Ana M. Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- University of Trás-os-Montes and Alto Douro (UTAD)
- Vila Real
- Portugal
| |
Collapse
|
23
|
Zhou R, Zhang H, Wang Z, Zhou X, Si J, Gan L, Li J, Liu Y. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation. Life Sci 2015; 139:114-22. [DOI: 10.1016/j.lfs.2015.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/28/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
|
24
|
Stancová V, Ziková A, Svobodová Z, Kloas W. Effects of the non-steroidal anti-inflammatory drug(NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:343-348. [PMID: 26233559 DOI: 10.1016/j.etap.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the effects of naproxen on the gene expression of antioxidant enzymes in adult zebrafish. Surprisingly, after 2 weeks exposure no significant effect on the mRNA expression of the target genes was found in the liver. However, mRNA levels of three genes were altered significantly in the intestine. The expression of Ucp-2 decreased at the environmental concentration of 1μg/L while mRNA expression of GST p2 increased at the concentration of 100μg/L. The mRNA level for the antioxidant enzyme CAT was up-regulated significantly at both the concentrations used. Exposure to naproxen caused only moderate effects on the expression of antioxidant genes in the intestine rather than in the liver, which demonstrates that the intestine is more sensitive to waterborne naproxen exposure than the liver. Interestingly, the adverse side effects of NSAIDs occur in the gastrointestinal tract of humans. To our knowledge, this is the first study that has focused on transcriptional effects of naproxen on zebrafish.
Collapse
Affiliation(s)
- V Stancová
- Department of Veterinary Public Health and Animal Welfare, University of Veterinary and Pharmaceutical Sciences Brno, Palackehotr. 1/3, 61242 Brno, Czech Republic.
| | - A Ziková
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Z Svobodová
- Department of Veterinary Public Health and Animal Welfare, University of Veterinary and Pharmaceutical Sciences Brno, Palackehotr. 1/3, 61242 Brno, Czech Republic
| | - W Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt-University, Berlin, Germany
| |
Collapse
|
25
|
Bian YY, Guo J, Majeed H, Zhu KX, Guo XN, Peng W, Zhou HM. Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide. In Vitro Cell Dev Biol Anim 2015; 51:722-9. [PMID: 25678463 DOI: 10.1007/s11626-015-9876-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
The application of antioxidants has been considered as an important and effective approach against conditions in which oxidative stress occurs. Especially, ferulic acid (FA) is an important antioxidant which exerts potency against cellular damage in the presence of oxidants. In the current study, the resistance effect of FA on hydrogen peroxide (H2O2)-stressed human embryonic kidney 293 cells (HEK293) in vitro was investigated. FA (1 mM) increased HEK293 cells' viability and significantly reduced H2O2-induced cellular apoptosis, which was confirmed with flow cytometry and morphological results. Cell cycle analysis indicated low percentage of sub-G0 population of FA-treated HEK293 cells that confirmed its resistance effect. The FA-treated HEK293 cells followed by H2O2 exposure resulted in decreased ROS levels compared to control (H2O2-treated only). The results indicated that pretreatment of FA on cell prior to H2O2 exposure could significantly improve cell survival and increase catalase (CAT) and superoxide dismutase (SOD) levels. On the other hand, reduction in the levels of MDA and ROS was obvious. It can be concluded that FA may protect HEK293 cells from injury induced by H2O2 through regulation of intracellular antioxidant enzyme activities and cell cycle distribution. The reduction in mitochondrial membrane potential was also inhibited by FA treatment. These results suggested the importance of naturally occurring antioxidants such as FA in therapeutic intervention methodology against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Bian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res 2014; 769:113-118. [PMID: 25771730 DOI: 10.1016/j.mrfmmm.2014.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/27/2014] [Accepted: 08/04/2014] [Indexed: 06/04/2023]
Abstract
With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200μg/mL of Ag NPs and ZnO NPs (90nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0-200μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD50 of ZnO NPs in Caco-2 cells is 0.431mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells' antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials than ZnO NPs.
Collapse
Affiliation(s)
- Yijuan Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Rongfa Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Fei Lyu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianshu Kang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Yihang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China
| | | |
Collapse
|
27
|
Pradhan A, Kharlyngdoh JB, Asnake S, Olsson PE. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:63-72. [PMID: 23958786 DOI: 10.1016/j.aquatox.2013.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Tetrabromoethylcyclohexane (TBECH) is a brominated flame retardant that has been shown to be a potent agonist to the human androgen receptor (AR). However, while it is present in the environment, it is not known if it interacts with AR from aquatic species. The present study was therefore aimed at improving our understanding of how TBECH affects aquatic animals using zebrafish as a model organism. In silico modeling demonstrated that TBECH diastereomers bind to the zebrafish androgen receptor (zAR) and in vitro and in vivo data showed that TBECH has androgenic properties. Deleterious effects of TBECH were studied on embryonic and juvenile zebrafish and qRT-PCR analysis in vitro and in vivo was performed to determine TBECH effects on gene regulation. TBECH was found to delay hatching at 1 μM and 10 μM doses while morphological abnormalities and juvenile mortality was observed at 10 μM. The qRT-PCR analysis showed alterations of multiple genes involved in chondrogenesis (cartilage development), metabolism and stress response. Thus, TBECH induces androgenic activity and has negative effects on zebrafish physiology and therefore its impact on the environment should be carefully monitored.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | | |
Collapse
|