1
|
Nakayama T, Sunaoshi M, Shang Y, Takahashi M, Saito T, Blyth BJ, Amasaki Y, Daino K, Shimada Y, Tachibana A, Kakinuma S. Calorie restriction alters the mechanisms of radiation-induced mouse thymic lymphomagenesis. PLoS One 2023; 18:e0280560. [PMID: 36662808 PMCID: PMC9858762 DOI: 10.1371/journal.pone.0280560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Calorie restriction (CR) suppresses not only spontaneous but also chemical- and radiation-induced carcinogenesis. Our previous study revealed that the cancer-preventive effect of CR is tissue dependent and that CR does not effectively prevent the development of thymic lymphoma (TL). We investigated the association between CR and the genomic alterations of resulting TLs to clarify the underlying resistance mechanism. TLs were obtained from previous and new experiments, in which B6C3F1 mice were exposed to radiation at 1 week of age and fed with a CR or standard (non-CR) diet from 7 weeks throughout their lifetimes. All available TLs were used for analysis of genomic DNA. In contrast to the TLs of the non-CR group, those of the CR group displayed suppression of copy-neutral loss of heterozygosity (LOH) involving relevant tumor suppressor genes (Cdkn2a, Ikzf1, Trp53, Pten), an event regarded as cell division-associated. However, CR did not affect interstitial deletions of those genes, which were observed in both groups. In addition, CR affected the mechanism of Ikzf1 inactivation in TLs: the non-CR group exhibited copy-neutral LOH with duplicated inactive alleles, whereas the CR group showed expression of dominant-negative isoforms accompanying a point mutation or an intragenic deletion. These results suggest that, even though CR reduces cell division-related genomic rearrangements by suppressing cell proliferation, tumors arise via diverse carcinogenic pathways including inactivation of tumor suppressors via interstitial deletions and other mutations. These findings provide a molecular basis for improved prevention strategies that overcome the CR resistance of lymphomagenesis.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mizuki Takahashi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Takato Saito
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, Mito, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
2
|
Sunaoshi M, Blyth BJ, Shang Y, Tsuruoka C, Morioka T, Shinagawa M, Ogawa M, Shimada Y, Tachibana A, Iizuka D, Kakinuma S. Post-Irradiation Thymic Regeneration in B6C3F1 Mice Is Age Dependent and Modulated by Activation of the PI3K-AKT-mTOR Pathway. BIOLOGY 2022; 11:biology11030449. [PMID: 35336821 PMCID: PMC8945464 DOI: 10.3390/biology11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Because children have a long life expectancy relative to adults and their tissues and organs are growing and developing rapidly, the risk of radiation carcinogenesis for children is considered higher than that for adults. However, the underlying mechanism(s) is unclear. To uncover the mechanism, we previously revealed that principal causative genes in mouse thymic lymphomas arising in irradiated infants or adults as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. Our results demonstrate that the dynamics of thymocytes during the post-irradiation period depends on the age at exposure. For irradiated infants in particular, the number of proliferating cells increase dramatically, and this correlate with activation of the PI3K-AKT-mTOR pathway. Thus, we conclude that the PI3K-AKT-mTOR pathway in infants contributed, at least in part, to thymus-cell dynamics through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma. Abstract The risk of radiation-induced carcinogenesis depends on age at exposure. We previously reported principal causative genes in lymphomas arising after infant or adult exposure to 4-fractionated irradiation as Pten or Ikzf1, respectively, suggesting that cells with mutation in these genes might be the origin of lymphomas arising after irradiation depending on age at exposure. Here, we clarified the age-dependent differences in thymus-cell dynamics in mice during the initial post-irradiation period. The thymocyte number initially decreased, followed by two regeneration phases. During the first regeneration, the proportion of phosphorylated-AKT-positive (p-AKT+) cells in cell-cycle phases S+G2/M of immature CD4−CD8− and CD4+CD8+ thymocytes and in phases G0/G1 of mature CD4+CD8− and CD4−CD8+ thymocytes was significantly greater in irradiated infants than in irradiated adults. During the second regeneration, the proportion of p-AKT+ thymocytes in phases G0/G1 increased in each of the three populations other than CD4−CD8− thymocytes more so than during the first regeneration. Finally, PI3K-AKT-mTOR signaling in infants contributed, at least in part, to biphasic thymic regeneration through the modification of cell proliferation and survival after irradiation, which may be associated with the risk of Pten mutation-associated thymic lymphoma.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Mari Ogawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan;
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
- Correspondence: ; Tel.: +81-43-206-3160
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan; (M.S.); (B.J.B.); (Y.S.); (C.T.); (T.M.); (M.S.); (M.O.); (Y.S.); (S.K.)
| |
Collapse
|
3
|
Liu S, Lyu J, Li Q, Wu X, Yang Y, Huo G, Zhu Q, Guo M, Shen Y, Wang S, Fan C. Generation of a uniform thymic malignant lymphoma model with C57BL/6J p53 gene deficient mice. J Toxicol Pathol 2022; 35:25-36. [PMID: 35221493 PMCID: PMC8828615 DOI: 10.1293/tox.2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphoma is the third most common cancer diagnosed in children, and T-cell lymphoma has
the worst prognosis based on clinical observations. To date, a lymphoma model with uniform
penetrance has not yet been developed. In this study, we generated a p53
deficient mouse model by targeting embryonic stem cells derived from a C57BL/6J mouse
strain. Homozygous p53 deficient mice exhibited a higher rate of
spontaneous tumorigenesis, with a high spontaneous occurrence rate (93.3%) of malignant
lymphoma. Because tumor models with high phenotypic consistency are currently needed, we
generated a lymphoma model by a single intraperitoneal injection of 37.5 or 75 mg/kg
N-methyl-N-nitrosourea to p53 deficient mice. Lymphoma and retinal
degeneration occurred in 100% of p53+/− mice administered with
higher concentrations of N-methyl-N-nitrosourea, a much greater response than those of
previously reported models. The main anatomic sites of lymphoma were the thymus, spleen,
bone marrow, and lymph nodes. Both induced and spontaneous lymphomas in the thymus and
spleen stained positive for CD3 antigen, and flow cytometry detected positive CD4 and/or
CD8 cells. Based on our observations and previous data, we hypothesize that mice with a B6
background are prone to lymphomagenesis.
Collapse
Affiliation(s)
- Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong 226133, China
| | - Qianqian Li
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| | - Yanwei Yang
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Guitao Huo
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, No. 2749, Xinluo Road, High-tech Zone, Jinan 250101, China
| | - Ming Guo
- Shandong Institute for Food and Drug Control, No. 2749, Xinluo Road, High-tech Zone, Jinan 250101, China
| | - Yuelei Shen
- Beijing Biocytogen Co. LTD, No. 88 Kechuang 6th Avenue Ludong Area Economic-Technological Development Area, Beijing 101111, China
| | - Sanlong Wang
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| |
Collapse
|
4
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
5
|
Daino K, Ishikawa A, Suga T, Amasaki Y, Kodama Y, Shang Y, Hirano-Sakairi S, Nishimura M, Nakata A, Yoshida M, Imai T, Shimada Y, Kakinuma S. Mutational landscape of T-cell lymphoma in mice lacking the DNA mismatch repair gene Mlh1: no synergism with ionizing radiation. Carcinogenesis 2019; 40:216-224. [PMID: 30721949 DOI: 10.1093/carcin/bgz013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Biallelic germline mutations in the DNA mismatch repair gene MLH1 lead to constitutional mismatch repair-deficiency syndrome and an increased risk for childhood hematopoietic malignancies, including lymphoma and leukemia. To examine how Mlh1 dysfunction promotes lymphoma as well as the influence of ionizing radiation (IR) exposure, we used an Mlh1-/- mouse model and whole-exome sequencing to assess genomic alterations in 23 T-cell lymphomas, including 8 spontaneous and 15 IR-associated lymphomas. Exposure to IR accelerated T-cell lymphoma induction in the Mlh1-/- mice, and whole-exome sequencing revealed that IR exposure neither increased the number of mutations nor altered the mutation spectrum of the lymphomas. Frequent mutations were evident in genes encoding transcription factors (e.g. Ikzf1, Trp53, Bcl11b), epigenetic regulators (e.g. Suv420h1, Ep300, Kmt2d), transporters (e.g. Rangap1, Kcnj16), extracellular matrix (e.g. Megf6, Lrig1), cell motility (e.g. Argef19, Dnah17), protein kinase cascade (e.g. Ptpro, Marcks) and in genes involved in NOTCH (e.g. Notch1), and PI3K/AKT (e.g. Pten, Akt2) signaling pathways in both spontaneous and IR-associated lymphomas. Frameshift mutations in mononucleotide repeat sequences within the genes Trp53, Ep300, Kmt2d, Notch1, Pten and Marcks were newly identified in the lymphomas. The lymphomas also exhibited a few chromosomal abnormalities. The results establish a landscape of genomic alterations in spontaneous and IR-associated lymphomas that occur in the context of mismatch repair dysfunction and suggest potential targets for cancer treatment.
Collapse
Affiliation(s)
- Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yotaro Kodama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shinobu Hirano-Sakairi
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Mitsuaki Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Takashi Imai
- Medical Databank Section, Hospital, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
6
|
Morioka T, Blyth BJ, Imaoka T, Nishimura M, Takeshita H, Shimomura T, Ohtake J, Ishida A, Schofield P, Grosche B, Kulka U, Shimada Y, Yamada Y, Kakinuma S. Establishing the Japan-Store house of animal radiobiology experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data. Int J Radiat Biol 2019; 95:1372-1377. [PMID: 31145030 DOI: 10.1080/09553002.2019.1625458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose: Projects evaluating the effects of radiation, within the National Institutes of Quantum and Radiological Science and Technology (QST), National Institute of Radiological Sciences (NIRS), have focused on risk analyses for life shortening and cancer prevalence using laboratory animals. Genetic and epigenetic alterations in radiation-induced tumors have been also analyzed with the aim of better understanding mechanisms of radiation carcinogenesis. As well as the economic and practical limitations of repeating such large-scale experiments, ethical considerations make it vital that we store and share the pathological data and samples of the animal experiments for future use. We are now constructing such an archive called the Japan-Storehouse of Animal Radiobiology Experiments (J-SHARE). Methods: J-SHARE records include information such as detailed experimental protocols, necropsy records and photographs of organs at necropsy. For each animal organs and tumor tissues are dissected, and parts are stored as frozen samples at -80 °C. Samples fixed with formalin are also embedded in paraffin blocks for histopathological analyses. Digital copies of stained tissues are being systematically saved using a virtual slide system linked to original records by barcodes. Embedded and frozen tissues are available for molecular analysis. Conclusion: Similar archive systems for radiation biology have also been under construction in the USA and Europe, the Northwestern University Radiation Archive (NURA), and STORE at the BfS, respectively. The J-SHARE will be linked with the sister-archives and made available for collaborative research to institutions and universities all over the world.
Collapse
Affiliation(s)
- Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Benjamin J Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | | | - Takeo Shimomura
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Jun Ohtake
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Atsuro Ishida
- Department of Information Technology, NIRS, QST , Chiba , Japan
| | - Paul Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge , UK
| | - Bernd Grosche
- Federal Office for Radiation Protection, Radiation and Health , Oberschleissheim , Germany
| | - Ulrike Kulka
- Federal Office for Radiation Protection, Radiation and Health , Oberschleissheim , Germany
| | | | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan.,Fukushima Project Headquarters, NIRS, QST , Chiba , Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| |
Collapse
|
7
|
Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y, Kakinuma S. Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol 2019; 95:1431-1440. [PMID: 30495977 DOI: 10.1080/09553002.2018.1547848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: To review recent studies to better understand the risk of second cancer after ion beam radiotherapy and to clarify the importance of animal radiobiology therein. Results: Risk of developing second cancer after radiotherapy is a concern, particularly for survivors of childhood tumors. Ion beam radiotherapy is expected to reduce the risk of second cancer by reducing exposure of normal tissues to radiation. Large uncertainty lies, however, in the choice of relative biological effectiveness (RBE) of high linear energy transfer (LET) radiation (e.g. carbon ions and neutrons) in cancer induction, especially for children. Studies have attempted to predict the risk of second cancer after ion beam radiotherapy based on an assessment of radiation dose, the risk of low LET radiation, and assumptions about RBE. Animal experiments have yielded RBE values for selected tissues, radiation types, and age at the time of irradiation; the results indicate potentially variable RBE which depends on tissues, ages, and dose levels. Animal studies have also attempted to identify genetic alterations in tumors induced by high LET radiation. Conclusions: Estimating the RBE value for cancer induction is important for understanding the risk of second cancer after ion beam radiotherapy. More comprehensive animal radiobiology studies are needed.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan.,QST Advanced Study Laboratory, QST , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Hitomi Moriyama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| |
Collapse
|
8
|
DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation. PLoS One 2016; 11:e0164194. [PMID: 27711132 PMCID: PMC5053445 DOI: 10.1371/journal.pone.0164194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 01/18/2023] Open
Abstract
Several lines of evidence indicate one’s age at exposure to radiation strongly modifies the risk of radiation-induced breast cancer. We previously reported that rat mammary carcinomas induced by pre- and post-pubertal irradiation have distinct gene expression patterns, but the changes underlying these differences have not yet been characterized. The aim of this investigation was to see if differences in CpG DNA methylation were responsible for the differences in gene expression between age at exposure groups observed in our previous study. DNA was obtained from the mammary carcinomas arising in female Sprague-Dawley rats that were either untreated or irradiated (γ-rays, 2 Gy) during the pre- or post-pubertal period (3 or 7 weeks old). The DNA methylation was analyzed using CpG island microarrays and the results compared to the gene expression data from the original study. Global DNA hypomethylation in tumors was accompanied by gene-specific hypermethylation, and occasionally, by unique tumor-specific patterns. We identified methylation-regulated gene expression candidates that distinguished the pre- and post-pubertal irradiation tumors, but these represented only 2 percent of the differentially expressed genes, suggesting that methylation is not a major or primary mechanism underlying the phenotypes. Functional analysis revealed that the candidate methylation-regulated genes were enriched for stem cell differentiation roles, which may be important in mammary cancer development and worth further investigation. However, the heterogeneity of human breast cancer means that the interpretation of molecular and phenotypic differences should be cautious, and take into account the co-variates such as hormone receptor status and cell-of-origin that may influence the associations.
Collapse
|
9
|
Hartmann S, Grandis JR. Treatment of head and neck cancer in the elderly. Expert Opin Pharmacother 2016; 17:1903-21. [DOI: 10.1080/14656566.2016.1220540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|