1
|
Pucci G, Forte GI, Cavalieri V. Evaluation of Epigenetic and Radiomodifying Effects during Radiotherapy Treatments in Zebrafish. Int J Mol Sci 2021; 22:ijms22169053. [PMID: 34445758 PMCID: PMC8396651 DOI: 10.3390/ijms22169053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos’ and larvae’s exposure to radiotherapy treatments.
Collapse
Affiliation(s)
- Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù, Italy
- Correspondence: (G.I.F.); (V.C.)
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, 90128 Palermo, Italy;
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
- Correspondence: (G.I.F.); (V.C.)
| |
Collapse
|
2
|
Liu Y, Bai J, Yao H, Li G, Zhang T, Li S, Zhang L, Si J, Zhou R, Zhang H. Embryotoxicity assessment and efficient removal of naphthalene from water by irradiated graphene aerogels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110051. [PMID: 31812022 DOI: 10.1016/j.ecoenv.2019.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Naphthalene has remained a challenge how to eradicate it from the water because of its carcinogenic risk to humans. In the present study, naphthalene prominently increased the rates of embryonic mortality and malformation, and decreased the hatchability of zebrafish which have a high developmental similarity to humans. Moreover, multiple-organ toxicity were notably found in naphthalene-treated zebrafish. Here, irradiated graphene aerogel (IGA) was successfully prepared from high-energy electron beam to generate more wrinkles, folds, defects and a strong absorption capability for naphthalene, compared with the non-irradiated graphene aerogel. IGA was outstandingly found to remove naphthalene from the embryo culture medium, and subsequently inhibit the embryotoxicity and maintain tissue integrity by restoring cardiac function, attenuating apoptosis signals, recovering eye morphology and structure, reducing expression of heat shock protein 70 in the tissues and promoting behavioral capacity. Meanwhile, no obvious negative impact of IGA was found in the developing zebrafish from embryo to larvae. Consequently, reduction in the toxicity of naphthalene during zebrafish embryogenesis was mediated by IGA as an advanced strategy.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Bai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Taofeng Zhang
- Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Sirui Li
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Luwei Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Gan L, Guo M, Si J, Zhang J, Liu Z, Zhao J, Wang F, Yan J, Li H, Zhang H. Protective effects of phenformin on zebrafish embryonic neurodevelopmental toxicity induced by X-ray radiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4202-4210. [DOI: 10.1080/21691401.2019.1687505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Menghuan Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, China
| | - Jin Zhao
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Fang Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfang Yan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Li
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li S, Li G, Zhang T, Li J, Zhao Q, Zhang B, Wang R, Zhou R, Si J, Gan L, Liu Y, Zhang H, Liu B. Co-SLD suppressed the growth of oral squamous cell carcinoma via disrupting mitochondrial function. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1746-1757. [PMID: 31062618 DOI: 10.1080/21691401.2019.1608218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Jili Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|