1
|
Laughery MF, Wilson HE, Sewell A, Stevison S, Wyrick JJ. The Surprising Diversity of UV-Induced Mutations. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300205. [PMID: 38884048 PMCID: PMC11170076 DOI: 10.1002/ggn2.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Indexed: 06/18/2024]
Abstract
Ultraviolet (UV) light is the most pervasive environmental mutagen and the primary cause of skin cancer. Genome sequencing of melanomas and other skin cancers has revealed that the vast majority of somatic mutations in these tumors are cytosine-to-thymine (C>T) substitutions in dipyrimidine sequences, which, together with tandem CC>TT substitutions, comprise the canonical UV mutation "signature". These mutation classes are caused by DNA damage directly induced by UV absorption, namely cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone photoproducts (6-4PP), which form between neighboring pyrimidine bases. However, many of the key driver mutations in melanoma do not fit this mutation signature, but instead are caused by T>A, T>C, C>A, or AC>TT substitutions, frequently occurring in non-dipyrimidine sequence contexts. This article describes recent studies indicating that UV light causes a more diverse spectrum of mutations than previously appreciated, including many of the mutation classes observed in melanoma driver mutations. Potential mechanisms for these diverse mutation signatures are discussed, including UV-induced pyrimidine-purine photoproducts and indirect DNA damage induced by UVA light. Finally, the article reviews recent findings indicating that human DNA polymerase eta normally suppresses these non-canonical UV mutation classes, which can potentially explain why canonical C>T substitutions predominate in human skin cancers.
Collapse
Affiliation(s)
- Marian F Laughery
- School of Molecular Biosciences Washington State University Pullman WA 99164 USA
| | - Hannah E Wilson
- School of Molecular Biosciences Washington State University Pullman WA 99164 USA
| | - Allysa Sewell
- School of Molecular Biosciences Washington State University Pullman WA 99164 USA
| | - Scott Stevison
- School of Molecular Biosciences Washington State University Pullman WA 99164 USA
| | - John J Wyrick
- School of Molecular Biosciences Washington State University Pullman WA 99164 USA
| |
Collapse
|
2
|
Sugiyama T, Sanyal MR. Biochemical analysis of H 2O 2-induced mutation spectra revealed that multiple damages were involved in the mutational process. DNA Repair (Amst) 2024; 134:103617. [PMID: 38154332 PMCID: PMC10842480 DOI: 10.1016/j.dnarep.2023.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Reactive oxygen species (ROS) are a major threat to genomic integrity and believed to be one of the etiologies of cancers. Here we developed a cell-free system to analyze ROS-induced mutagenesis, in which DNA was exposed to H2O2 and then subjected to translesion DNA synthesis by various DNA polymerases. Then, frequencies of mutations on the DNA products were determined by using next-generation sequencing technology. The majority of observed mutations were either C>A or G>A, caused by dAMP insertion at G and C residues, respectively. These mutations showed similar spectra to COSMIC cancer mutational signature 18 and 36, which are proposed to be caused by ROS. The in vitro mutations can be produced by replicative DNA polymerases (yeast DNA polymerase δ and ε), suggesting that ordinary DNA replication is sufficient to produce them. Very little G>A mutation was observed immediately after exposure to H2O2, but the frequency was increased during the 24 h after the ROS was removed, indicating that the initial oxidation product of cytosine needs to be maturated into a mutagenic lesion. Glycosylase-sensitivities of these mutations suggest that the C>A were made on 8-oxoguanine or Fapy-guanine, and that G>A were most likely made on 5-hydroxycytosine modification.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA.
| | - Mahima R Sanyal
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Graduate Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Corradi C, Vilar JB, Buzatto VC, de Souza TA, Castro LP, Munford V, De Vecchi R, Galante PAF, Orpinelli F, Miller TLA, Buzzo JL, Sotto MN, Saldiva P, de Oliveira JW, Chaibub SCW, Sarasin A, Menck CFM. Mutational signatures and increased retrotransposon insertions in xeroderma pigmentosum variant skin tumors. Carcinogenesis 2023; 44:511-524. [PMID: 37195263 DOI: 10.1093/carcin/bgad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified. However, basal cell carcinomas also showed distinct C>A mutation spectra reflecting a mutational signature possibly related to sunlight-induced oxidative stress. Moreover, four samples carry different mutational signatures, with C>A mutations associated with tobacco chewing or smoking usage. Thus, XP-V patients should be warned of the risk of these habits. Surprisingly, higher levels of retrotransposon somatic insertions were also detected when the tumors were compared with non-XP skin tumors, revealing other possible causes for XP-V tumors and novel functions for the TLS polymerase eta in suppressing retrotransposition. Finally, the expected high mutation burden found in most of these tumors renders these XP patients good candidates for checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliana B Vilar
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Vanessa C Buzatto
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Tiago A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Tau GC Bioinformatics, Cotia, SP 06711-020, Brazil
| | - Ligia P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Pedro A F Galante
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Fernanda Orpinelli
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Thiago L A Miller
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - José L Buzzo
- Molecular Oncology Center, Bioinformatics Laboratory, Hospital Sírio-Libanês, São Paulo, SP 01308-060, Brazil
| | - Mirian N Sotto
- Medical School, University of Sao Paulo, Sao Paulo, SP 01246-903, Brazil
| | - Paulo Saldiva
- Medical School, University of Sao Paulo, Sao Paulo, SP 01246-903, Brazil
| | - Jocelânio W de Oliveira
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|