1
|
Moubarz G, Saad-Hussein A, Shahy EM, Mahdy-Abdallah H, Mohammed AMF, Saleh IA, Abo-Zeid MAM, Abo-Elfadl MT. Lung cancer risk in workers occupationally exposed to polycyclic aromatic hydrocarbons with emphasis on the role of DNA repair gene. Int Arch Occup Environ Health 2023; 96:313-329. [PMID: 36287252 PMCID: PMC9905182 DOI: 10.1007/s00420-022-01926-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Workers in secondary aluminum production plants are occupationally exposed to polycyclic aromatic hydrocarbons (PAHs). We aimed to monitor the concentrations of PAHs in air and in serum of workers at two secondary aluminum production plants. We also investigated the potential risk of lung cancer development among PAHs exposed workers with emphasis on the role of A1AT mutation and APEX1 gene polymorphisms. METHODS This study included 177 workers from administrative departments and production lines. Blood samples were obtained for estimation of benzo(a)pyrene diol epoxide albumin adduct (BPDE-Alb adduct), anti-Cyclin-B1 marker (CCNB1) and squamous cell carcinoma antigen (SCCAg). Genes' polymorphism for human apurinic/apyrimidinic endonuclease (APEX1) and alpha-1-anti-trypsin (A1AT) gene mutation were detected. RESULTS There was a significant increase in the level of BPDE-Alb adduct among exposed workers in comparison to non-exposed group. Moreover, 41.67% of exposed workers in El Tebbin had BPDE-Alb adduct level ≥ 15 ng/ml versus 29.6% of workers in Helwan factory. There was a significant increase in tumor markers (SCCAg and CCNB1) among workers whose BPDE-Alb adduct ≥ 15 ng/ml. There was a significant increase in the level of BPDE-Alb adducts in exposed workers carrying homozygous APEX1 genotype Glu/Glu. Furthermore, exposed workers with the Glu/Glu genotype had high tumor markers levels. There was a significant increase in levels of BPDE-Alb adducts in workers carrying A1AT mutant allele. Moreover, workers with mutant A1AT genotype had significantly high tumor markers (SCCAg and CCNB1) levels. CONCLUSION Therefore, we conclude that aluminum workers may be at a potential risk of lung cancer development due to PAHs exposure. Although PAHs concentrations in air were within the permissible limits, yet evidence of DNA damage was present as expressed by high BPDE-albumin adduct level in exposed workers. Also, elevation of tumor markers (SCCAg and CCNB1) in exposed workers points to the importance of periodic biological monitoring of such workers to protect them from cancer risk.
Collapse
Affiliation(s)
- Gehan Moubarz
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt.
| | - Amal Saad-Hussein
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Eman M. Shahy
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Heba Mahdy-Abdallah
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Atef M. F. Mohammed
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Inas A. Saleh
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| | - Mona A. M. Abo-Zeid
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Institute, National Research Centre, Giza, Egypt ,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud T. Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt ,Biochemistry Department, Genetic Engineering and Biotechnology Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Zhao N, Wu W, Cui S, Li H, Feng Y, Guo L, Zhang Y, Wang S. Effects of Benzo[a]pyrene-DNA adducts, dietary vitamins, folate, and carotene intakes on preterm birth: a nested case-control study from the birth cohort in China. Environ Health 2022; 21:48. [PMID: 35513839 PMCID: PMC9074263 DOI: 10.1186/s12940-022-00859-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) and its DNA adducts has been suggested to increase the risk of preterm birth (PB). Yet, few studies have been conducted to investigate this association, and the role of dietary nutrients intakes including vitamins, folate, and carotene during pre- and post-conception on this association has not been studied. METHODS Building upon a birth cohort in Taiyuan China, we conducted a nested case control study including 83 PB and 82 term births. Benzo[a]pyrene (BaP)-DNA adducts were measured by an improved LC-MC/MC analytic method. Dietary nutrient intakes were estimated from food frequency questionnaire using the Chinese Standard Tables of Food Consumption. Multivariable logistic regression model was used to examine the associations. RESULTS Increased risk of PB was observed as per interquartile increase in maternal BaP-DNA adduct level (OR = 1.27, 95%CI 0.95-1.67). Compared to low level (below mean) of maternal adducts, high level (above mean) of adducts was associated with the risk of PB (OR = 2.05, 95%CI 1.05-4.01). After stratified by dietary nutrients intakes, high adducts levels were associated with approximately 2-fourfold times increases in risk of PB among women with low vitamin A, C, E, folate, and carotene intakes during pre- and/or post-conception. Stronger stratified associations were consistently seen during preconception. Similar patterns were observed after additional adjustment for supplementation. CONCLUSIONS Our study supports the hypothesis that high level of maternal PAHs exposure was significantly associated with increased risk of PB, and provides the first evidence that dietary vitamins, carotene, and folate intake levels may modify this association during different pregnancy windows. Our findings are relevant to identify recommendation for environment management and prenatal nutrition regarding pregnant women and newborns. Further investigation in other populations is warranted.
Collapse
Affiliation(s)
- Nan Zhao
- Medical Research Center/State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Weiwei Wu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shiwei Cui
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Haibin Li
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ling Guo
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China.
| |
Collapse
|
3
|
Pelland-St-Pierre L, Sernoskie SC, Verner MA, Ho V. Genotoxic effect of meat consumption: A mini review. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 863-864:503311. [PMID: 33678247 DOI: 10.1016/j.mrgentox.2021.503311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
In 2015, the International Agency for Research on Cancer classified the consumption of processed meat as carcinogenic to humans (Group 1) and red meat as probably carcinogenic to humans (Group 2A) based on sufficient data from animal models and epidemiological studies. However, research characterising the mechanisms underlying this carcinogenic process in humans are limited, particularly with respect to measures of direct DNA damage. The current review sought to evaluate and summarize the recent literature, published since 2000, regarding the associations of meat consumption and three biomarkers of genotoxicity in humans: DNA strand breaks (measured using the comet assay), DNA adducts, and micronucleus formation. After screening 230 potential articles, 35 were included, and then were classified as experimental or observational in design, the latter of which were further categorized according to their dietary assessment approach. Among the 30 observational studies, 4 of which used two different assays, 3 of 5 comet assay studies, 13 of 20 DNA adduct studies, and 7 of 9 micronucleus studies reported a positive association between meat consumption and DNA damage. Among the 5 experimental studies, 1 of 1 using the comet assay, 3 of 3 measuring DNA adducts and 0 of 1 measuring micronuclei reported significant positive associations with meat consumption. Nevertheless, common limitations among the selected publications included small sample size, and poor methodological reporting of both exposure and outcome measures. Moreover, the vast majority of studies only measured DNA damage in one biological sample using a single assay and we cannot exclude the possibility of publication bias. Ultimately, our review of the literature, published since 2000, revealed a preponderance of studies that support mechanisms of genotoxicity in playing an important role in the meat-cancer association.
Collapse
Affiliation(s)
- Laura Pelland-St-Pierre
- Department of Social and Preventive Medicine, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada; Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
| | - Samantha Christine Sernoskie
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Marc-André Verner
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, Québec, Canada; Department of Occupational and Environmental Health, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada
| | - Vikki Ho
- Department of Social and Preventive Medicine, École de Santé Publique de l'Université de Montréal (ESPUM), Université de Montréal, Montréal, Québec, Canada; Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
4
|
Pavanello S, Campisi M, Mastrangelo G, Hoxha M, Bollati V. The effects of everyday-life exposure to polycyclic aromatic hydrocarbons on biological age indicators. Environ Health 2020; 19:128. [PMID: 33272294 PMCID: PMC7713168 DOI: 10.1186/s12940-020-00669-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Further knowledge on modifiable aging risk factors is required to mitigate the increasing burden of age-related diseases in a rapidly growing global demographic of elderly individuals. We explored the effect of everyday exposure to polycyclic aromatic hydrocarbons (PAHs), which are fundamental constituents of air pollution, on cellular biological aging. This was determined via the analysis of leukocyte telomere length (LTL), mitochondrial DNA copy number (LmtDNAcn), and by the formation of anti-benzo[a]pyrene diolepoxide (B[a]PDE-DNA) adducts. METHODS The study population consisted of 585 individuals living in North-East Italy. PAH exposure (diet, indoor activities, outdoor activities, traffic, and residential exposure) and smoking behavior were assessed by questionnaire and anti-B[a]PDE-DNA by high-performance-liquid-chromatography. LTL, LmtDNAcn and genetic polymorphisms [glutathione S-transferase M1 and T1 (GSTM1; GSTT1)] were measured by polymerase chain reaction. Structural equation modelling analysis evaluated these complex relationships. RESULTS Anti-B[a]PDE-DNA enhanced with PAH exposure (p = 0.005) and active smoking (p = 0.0001), whereas decreased with detoxifying GSTM1 (p = 0.021) and in females (p = 0.0001). Subsequently, LTL and LmtDNAcn reduced with anti-B[a]PDE-DNA (p = 0.028 and p = 0.018), particularly in males (p = 0.006 and p = 0.0001). Only LTL shortened with age (p = 0.001) while elongated with active smoking (p = 0.0001). Besides this, the most significant determinants of PAH exposure that raised anti-B[a]PDE-DNA were indoor and diet (p = 0.0001), the least was outdoor (p = 0.003). CONCLUSION New findings stemming from our study suggest that certain preventable everyday life exposures to PAHs reduce LTL and LmtDNAcn. In particular, the clear association with indoor activities, diet, and gender opens new perspectives for tailored preventive measures in age-related diseases. CAPSULE Everyday life exposure to polycyclic aromatic hydrocarbons reduces leukocyte telomere length and mitochondrial DNA copy number through anti-B[a]PDE-DNA adduct formation.
Collapse
Affiliation(s)
- Sofia Pavanello
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
- Azienda Ospedaliera di Padova, Unità di Medicina del Lavoro, Padova, Italy
| | - Manuela Campisi
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
| | - Giuseppe Mastrangelo
- Medicina del Lavoro, Dipartimento di Scienze Cardio- Toraco- Vascolari e Sanità Pubblica, Università di Padova, Padova, Italy
| | - Mirjam Hoxha
- EPIGET – Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology Lab, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
- Dipartimento di Medicina Preventiva, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
5
|
Rehman MYA, Taqi MM, Hussain I, Nasir J, Rizvi SHH, Syed JH. Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42405-42423. [PMID: 32875453 DOI: 10.1007/s11356-020-09088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/27/2020] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
| | | | - Imran Hussain
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, PO, 45320, Pakistan
- Business Unit Environmental Resources and Technologies, Center for Energy, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
6
|
Hadrup N, Mielżyńska-Švach D, Kozłowska A, Campisi M, Pavanello S, Vogel U. Association between a urinary biomarker for exposure to PAH and blood level of the acute phase protein serum amyloid A in coke oven workers. Environ Health 2019; 18:81. [PMID: 31477116 PMCID: PMC6721239 DOI: 10.1186/s12940-019-0523-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Coke oven workers are exposed to both free and particle bound PAH. Through this exposure, the workers may be at increased risk of cardiovascular diseases. Systemic levels of acute phase response proteins have been linked to cardiovascular disease in epidemiological studies, suggesting it as a marker of these conditions. The aim of this study was to assess whether there was association between PAH exposure and the blood level of the acute phase inflammatory response marker serum amyloid A (SAA) in coke oven workers. METHODS A total of 87 male Polish coke oven workers from two different plants comprised the study population. Exposure was assessed by means of the individual post-shift urinary excretion of 1-hydroxypyrene, as internal dose of short-term PAH exposure, and by anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA), as a biomarker of long-term PAH exposure. Blood levels of acute phase proteins SAA and CRP were measured by immunoassay. C-reactive protein (CRP) levels were included to adjust for baseline levels of SAA. RESULTS Multiple linear regression showed that the major determinants of increased SAA levels were urinary 1-hydroxypyrene (beta = 0.56, p = 0.030) and serum CRP levels (beta = 7.08; p < 0.0001) whereas anti-B[a]PDE-DNA, the GSTM1 detoxifying genotype, diet, and smoking were not associated with SAA levels. CONCLUSIONS Urinary 1-hydroxypyrene as biomarker of short-term PAH exposure and serum levels of CRP were predictive of serum levels of SAA in coke oven workers. Our data suggest that exposure of coke oven workers to PAH can lead to increased systemic acute response and therefore potentially increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Danuta Mielżyńska-Švach
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Agnieszka Kozłowska
- Witold Pilecki State School of Higher Education, Nursing Institute, Oświęcim, Poland
| | - Manuela Campisi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Chen HJC, Liu CT, Li YJ. Correlation between Glyoxal-Induced DNA Cross-Links and Hemoglobin Modifications in Human Blood Measured by Mass Spectrometry. Chem Res Toxicol 2018; 32:179-189. [PMID: 30507124 DOI: 10.1021/acs.chemrestox.8b00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glyoxal is an oxoaldehyde generated from the degradation of glucose-protein conjugates and from lipid peroxidation in foods and in vivo, and it is also present in the environment (e.g., cigarette smoke). The major endogenous source of glyoxal is glucose autoxidation, and the glyoxal concentrations in plasma are higher in diabetic patients than in nondiabetics. Glyoxal reacts with biomolecules forming covalently modified DNA and protein adducts. We previously developed sensitive and specific assays based on nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) for quantification of DNA cross-linked adducts (dG-gx-dC and dG-gx-dA) and for hemoglobin adducts derived from glyoxal. In this study, we isolated and analyzed both leukocyte DNA and hemoglobin from the blood of diabetic patients and compared the adduct levels with those from nondiabetic subjects using the modified assays. The results indicated that the extents of glyoxal-induced hemoglobin modifications on α-Lys-11, α-Arg-92, β-Lys-17, and β-Lys-66 were statistically higher in diabetic patients than nondiabetics and they correlated with HbA1c significantly. Moreover, the levels of dG-gx-dC in leukocyte DNA correlated positively with the extents of globin modification at α-Lys-11 and β-Lys-17, while levels of dG-gx-dA correlated with those at α-Lys-11 and α-Arg-92 in nonsmoking subjects. Comparing the levels and the correlation coefficients of these hemoglobin and DNA adducts including or excluding smokers, it appears that smoking is not a major contributor to glyoxal-induced adduction of hemoglobin and leukocyte DNA. To the best of our knowledge, this is one of the few reports of positive correlation between DNA and protein adducts of the same compound (glyoxal) in the blood from the same subjects. Because of the high abundance of hemoglobin in blood, the results indicate that quantification of glyoxal-modified peptides in hemoglobin might serve as a dosimetry for glyoxal and a practical surrogate biomarker for assessing glyoxal-induced DNA damage and its prevention.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Chun-Ting Liu
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Yi-Jou Li
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| |
Collapse
|
8
|
Villalta PW, Hochalter JB, Hecht SS. Ultrasensitive High-Resolution Mass Spectrometric Analysis of a DNA Adduct of the Carcinogen Benzo[a]pyrene in Human Lung. Anal Chem 2017; 89:12735-12742. [PMID: 29111668 PMCID: PMC6027747 DOI: 10.1021/acs.analchem.7b02856] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Benzo[a]pyrene (BaP), an archetypical polycyclic aromatic hydrocarbon, is classified as "carcinogenic to humans" and is ubiquitous in the environment, as evident by the measurable levels of BaP metabolites in virtually all human urine samples examined. BaP carcinogenicity is believed to occur mainly through its covalent modification of DNA, resulting in the formation of BPDE-N2-dG, an adduct formed between deoxyguanosine and a diol epoxide metabolite of BaP, with subsequent mutation of critical growth control genes. In spite of the liquid chromatography-mass spectrometry (LC-MS)-based detection of BPDE-N2-dG in BaP-treated rodents, and indirectly through high-performance liquid chromatography (HPLC)-fluorescence detection of BaP-7,8,9,10-tetraols released from human DNA upon acid hydrolysis, BPDE-N2-dG adducts have rarely if ever been observed directly in human samples using LC-MS techniques, even though sophisticated methodologies have been employed which should have had sufficient sensitivity. With this in mind, we developed a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methodology employing high-resolution/accurate mass analysis for detecting ultratrace levels of these adducts. These efforts are directly translatable to the development of sensitive detection of other small molecules using trap-based LC-ESI-MS/MS detection. The developed methodology had a limit of detection (LOD) of 1 amol of BPDE-N2-dG on-column, corresponding to 1 BPDE-N2-dG adduct per 1011 nucleotides (1 adduct per 10 human lung cells) using 40 μg of human lung DNA. To our knowledge, this is the most sensitive DNA adduct quantitation method yet reported, exceeding the sensitivity of the 32P-postlabeling assay (∼1 adduct per 1010 nucleotides). Twenty-nine human lung DNA samples resulted in 20 positive measurements above the LOD, with smoker and nonsmoker DNA containing 3.1 and 1.3 BPDE-N2-dG adducts per 1011 nucleotides, respectively.
Collapse
Affiliation(s)
- Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - J. Bradley Hochalter
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Da Silva Pinto EA, Garcia EM, de Almeida KA, Fernandes CFL, Tavella RA, Soares MCF, Baisch PRM, Muccillo-Baisch AL, da Silva Júnior FMR. Genotoxicity in adult residents in mineral coal region-a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16806-16814. [PMID: 28567685 DOI: 10.1007/s11356-017-9312-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The present study assessed the DNA damage in environmentally exposed volunteers living in seven municipalities in an industrial coal region, through the use of the comet assay with blood cells and the micronucleus test with buccal cells. Blood and buccal smears were collected from 320 male volunteers living in seven cities inserted in a coal region. They were ages of 18 and 50 years and also completed a questionnaire intended to identify factors associated with DNA damage through a Poisson regression analysis. The comet assay detected significant differences in DNA damage in volunteers from different municipalities, and neighboring cities (Pedras Altas, Aceguá, and Hulha Negra) had a higher level of DNA damage in relation to control city. Some of the risk factors associated with identified DNA lesions included residence time and life habits. On the other hand, the micronucleus test did not identify differences between the cities studied, but the regression analysis identified risk factors such as age and life habits (consumption of mate tea and low carbohydrates diet). We conclude that there are differences in the DNA damage of volunteers from different cities of the carboniferous region, but the presence of micronuclei in the oral mucosa does not differ between the same cities. Furthermore, we alert that some related factors may increase the risk of genotoxicity, such as residence location and time, and living and food habits. Finally, we suggest the need for continuous biomonitoring of the population, as well as for investing in health promotion in these vulnerable populations.
Collapse
Affiliation(s)
- Edlaine Acosta Da Silva Pinto
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Edariane Menestrino Garcia
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Krissia Aparecida de Almeida
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Caroline Feijó Lopes Fernandes
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Ronan Adler Tavella
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Maria Cristina Flores Soares
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Paulo Roberto Martins Baisch
- Laboratório de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande do Sul - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96201-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
10
|
Impact of prenatal exposure to polycyclic aromatic hydrocarbons from maternal diet on birth outcomes: a birth cohort study in Korea. Public Health Nutr 2016; 19:2562-71. [DOI: 10.1017/s1368980016000550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractObjectivePolycyclic aromatic hydrocarbons (PAH) are common dietary exposures that cross the human placenta and are classified as a probable human carcinogen. The aim of the present study was to investigate the potential impact of exposure to PAH-containing meat consumed during pregnancy on birth outcomes.DesignProspective birth cohort study. Only non-smoking women with singleton pregnancies, who were free from chronic disease such as diabetes and hypertension, were included in the study. Maternal consumption of PAH-rich meat was estimated through FFQ. Multiple linear regression was used to assess factors related to higher intake and the association between dietary PAH and birth outcomes.SettingRepublic of Korea, 2006–2011.SubjectsPregnant women (n 778) at 12–28 weeks of gestation enrolled in the Mothers and Children’s Environmental Health (MOCEH) study.ResultsThe multivariable regression model showed a significant reduction in birth weight associated with higher consumption level of foods rich in PAH, such as grilled or roasted meat, during pregnancy (β=−17·48 g, P<0·05 for every 1 point higher in meat score). Further adjusting for biomarkers of airborne PAH did not alter this association. There was no evidence that higher consumption level of PAH-rich meat shortens the duration of gestation (P=0·561). Regression models performed for birth length and head circumference produced negative effects that were not statistically significant.ConclusionsConsumption of higher levels of barbecued, fried, roasted and smoked meats during pregnancy was associated with reduced birth weight. Dietary risk of PAH exposure in Korean women is of concern.
Collapse
|
11
|
Demetriou CA, Vineis P. Carcinogenicity of ambient air pollution: use of biomarkers, lessons learnt and future directions. J Thorac Dis 2015; 7:67-95. [PMID: 25694819 DOI: 10.3978/j.issn.2072-1439.2014.12.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity.
Collapse
Affiliation(s)
- Christiana A Demetriou
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paolo Vineis
- 1 MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK ; 2 Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
12
|
Hecht SS, Hochalter JB. Quantitation of enantiomers of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]-pyrene in human urine: evidence supporting metabolic activation of benzo[a]pyrene via the bay region diol epoxide. Mutagenesis 2014; 29:351-6. [PMID: 25053834 PMCID: PMC4141684 DOI: 10.1093/mutage/geu024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Benzo[a]pyrene (BaP), a potent polycyclic aromatic hydrocarbon carcinogen, is widely distributed in the human environment. All humans are exposed to BaP through the diet and contact with the general environment; cigarette smokers have higher exposure. An important pathway of BaP metabolism proceeds through formation of diol epoxides including the 'bay region diol epoxide' 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [BaP-(7R,8S)-diol-(9S,10R)-epoxide] and the 'reverse diol epoxide' 9S,10R-dihydroxy-7R,8S-epoxy-7,8,9,10-tetrahydrobenzo [a]pyrene [BaP-(9S,10R)-diol-(7R,8S)-epoxide]. The bay region diol epoxide is considered a major ultimate carcinogen of BaP based on studies in cell culture and laboratory animals, but the available data in humans are less convincing. The bay region diol epoxide and the reverse diol epoxide react with H2O to produce enantiomeric BaP-tetraols that are excreted in the urine. We used chiral stationary-phase high-performance liquid chromatography and gas chromatography-negative ion chemical ionisation-tandem mass spectrometry to quantify these enantiomeric BaP-tetraols in the urine of 25 smokers and 25 non-smokers. The results demonstrated that the BaP-tetraol enantiomer representing the carcinogenic bay region diol epoxide pathway accounted for 68±6% (range 56-81%) of total BaP-tetraol in smokers and 64±6% (range 46-78%) in non-smokers. Levels of the major BaP-tetraol enantiomer decreased by 75% in smokers who quit smoking. These data provide convincing evidence in support of the bay region diol epoxide mechanism of BaP carcinogenesis in humans.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center andDepartment of Laboratory Medicine and Pathology, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55105, USA
| | - Jon Bradley Hochalter
- Masonic Cancer Center andDepartment of Laboratory Medicine and Pathology, University of Minnesota, 2231 6th Street SE, 2-148 CCRB, Minneapolis, MN 55105, USA
| |
Collapse
|
13
|
Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:512086. [PMID: 24224167 PMCID: PMC3808713 DOI: 10.1155/2013/512086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 02/03/2023]
Abstract
Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.
Collapse
|
14
|
Duarte-Salles T, Mendez MA, Meltzer HM, Alexander J, Haugen M. Dietary benzo(a)pyrene intake during pregnancy and birth weight: associations modified by vitamin C intakes in the Norwegian Mother and Child Cohort Study (MoBa). ENVIRONMENT INTERNATIONAL 2013; 60:217-223. [PMID: 24071023 DOI: 10.1016/j.envint.2013.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Maternal exposure to polycyclic aromatic hydrocarbons (PAH) during pregnancy has been associated with reduced fetal growth. However, the role of diet, the main source of PAH exposure among non-smokers, remains uncertain. OBJECTIVE To assess associations between maternal exposure to dietary intake of the genotoxic PAH benzo(a)pyrene [B(a)P] during pregnancy and birth weight, exploring potential effect modification by dietary intakes of vitamins C, E and A, hypothesized to influence PAH metabolism. METHODS This study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Dietary B(a)P and nutrient intakes were estimated based on total consumption obtained from a food frequency questionnaire (FFQ) and estimated based on food composition data. Data on infant birth weight were obtained from the Medical Birth Registry of Norway (MBRN). Multivariate regression was used to assess associations between dietary B(a)P and birth weight, evaluating potential interactions with candidate nutrients. RESULTS The multivariate-adjusted coefficient (95%CI) for birth weight associated with maternal energy-adjusted B(a)P intake was -20.5g (-31.1, -10.0) in women in the third compared with the first tertile of B(a)P intake. Results were similar after excluding smokers. Significant interactions were found between elevated intakes of vitamin C (>85mg/day) and dietary B(a)P during pregnancy for birth weight (P<0.05), but no interactions were found with other vitamins. The multivariate-adjusted coefficients (95%CI) for birth weight in women in the third compared with the first tertile of B(a)P intake were -44.4g (-76.5, -12.3) in the group with low vitamin C intakes vs. -17.6g (-29.0, -6.1) in the high vitamin C intake group. CONCLUSION The results suggest that higher prenatal exposure to dietary B(a)P may reduce birth weight. Lowering maternal intake of B(a)P and increasing dietary vitamin C intake during pregnancy may help to reduce any adverse effects of B(a)P on birth weight.
Collapse
Affiliation(s)
- Talita Duarte-Salles
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | |
Collapse
|
15
|
Pavanello S, Dioni L, Hoxha M, Fedeli U, Mielzynska-Svach D, Baccarelli AA. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev 2013; 22:1722-9. [PMID: 23885040 DOI: 10.1158/1055-9965.epi-13-0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increased mitochondrial DNA copy number (mtDNAcn) is a biologic response to mtDNA damage and dysfunction, predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens and may cause mitochondrial toxicity. Whether PAH exposure and PAH-related nuclear DNA (nDNA) genotoxic effects are linked with increased mtDNAcn has never been evaluated. METHODS We investigated the effect of chronic exposure to PAHs on mtDNAcn in peripheral blood lymphocytes (PBLs) of 46 Polish male noncurrent smoking coke-oven workers and 44 matched controls, who were part of a group of 94 study individuals examined in our previous work. Subjects' PAH exposure and genetic alterations were characterized through measures of internal dose (urinary 1-pyrenol), target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei and telomere length), and DNA methylation (p53 promoter) in PBLs. mtDNAcn (MT/S) was measured using a validated real-time PCR method. RESULTS Workers with PAH exposure above the median value (>3 μmol 1-pyrenol/mol creatinine) showed higher mtDNAcn [geometric means (GM) of 1.06 (unadjusted) and 1.07 (age-adjusted)] compared with controls [GM 0.89 (unadjusted); 0.89 (age-adjusted); (P = 0.029 and 0.016)], as well as higher levels of genetic and chromosomal [i.e., anti-BPDE-DNA adducts (P < 0.001), micronuclei (P < 0.001), and telomere length (P = 0.053)] and epigenetic [i.e., p53 gene-specific promoter methylation (P < 0.001)] alterations in the nDNA. In the whole study population, unadjusted and age-adjusted mtDNAcn was positively correlated with 1-pyrenol (P = 0.043 and 0.032) and anti-BPDE-DNA adducts (P = 0.046 and 0.049). CONCLUSIONS PAH exposure and PAH-related nDNA genotoxicity are associated with increased mtDNAcn. IMPACT The present study is suggestive of potential roles of mtDNAcn in PAH-induced carcinogenesis.
Collapse
Affiliation(s)
- Sofia Pavanello
- Authors' Affiliations: Occupational Health Section, Department of Cardiac, Thoracic, and Vascular Sciences, Università degli Studi di Padova; Sistema Epidemiologico Regione Veneto (SER), Padova; Department of Clinical Sciences and Community Health, University of Milan, Milano and Fondazione IRCSS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland; and Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
16
|
Liu M, Chen L, Zhou R, Wang J. Association between GSTM1 polymorphism and DNA adduct concentration in the occupational workers exposed to PAHs: A meta-analysis. Gene 2013; 519:71-6. [DOI: 10.1016/j.gene.2013.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/16/2022]
|
17
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
18
|
Ayari I, Fedeli U, Saguem S, Hidar S, Khlifi S, Pavanello S. Role of CYP1A2 polymorphisms in breast cancer risk in women. Mol Med Rep 2012; 7:280-6. [PMID: 23128882 DOI: 10.3892/mmr.2012.1164] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P4501A2 (CYP1A2) is a key enzyme in the etiology of breast cancer (BC). It is involved in breast carcinogen activation [aromatic (AAs) and heterocyclic amines (HAs), polycyclic aromatic hydrocarbons (PAHs)], in the production of beneficial oestrogen [2-hydroxyestrone (2-OHE1)] and in converting arachidonic acid (AAc) to epoxyeicosatrienoic acids (EETs), which have anti-inflammatory properties. Within a hospital-based case-control study, the effect of functional CYP1A2 variants [-3860G/A (rs2069514), -2467T/delT (rs3569413), -163C/A (rs762551)] and their interactions with environmental factors in BC risk was investigated. The study population included 125 BC cases and 43 non-cancer controls. Genotyping was performed in RT-PCR using Taqman assays. The gene-environment interaction was appraised using a case-only study design. We found that the -3860A variant, independently from environmental factors, as well as by interacting with fried foods (p=0.025) and indoor exposure to pollutants (p=0.050), reduced the risk of BC (p=0.025), whereas its interaction with coffee (p=0.045) increased the BC risk. This is the first study indicating that the -3860A variant, by decreasing CYP1A2 activity, modifies BC risk by interacting with environmental factors, thereby supporting the hypothesis that reduced CYP1A2 activity contributes to BC risk in different ways, for example, it may be protective by reducing the activation of pro-carcinogens such as AAs, HAs and PAHs, but would increase risk by reducing the beneficial formation of 2-OHE1 and EETs.
Collapse
Affiliation(s)
- Imene Ayari
- Metabolic Biophysics and Applied Pharmacology Laboratory, Department of Biophysics, University of Sousse, Sousse 4002, Tunisia
| | | | | | | | | | | |
Collapse
|
19
|
Rossner P, Svecova V, Schmuczerova J, Milcova A, Tabashidze N, Topinka J, Pastorkova A, Sram RJ. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part I: bulky DNA adducts. Mutagenesis 2012; 28:89-95. [PMID: 23047913 DOI: 10.1093/mutage/ges057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The health of human populations living in industrial regions is negatively affected by exposure to environmental air pollutants. In this study, we investigated the impact of air pollution on a cohort of subjects living in Ostrava, a heavily polluted industrial region and compared it with a cohort of individuals from the relatively clean capital city of Prague. This study consisted of three sampling periods differing in the concentrations of major air pollutants (winter 2009, summer 2009 and winter 2010). During all sampling periods, the study subjects from Ostrava region were exposed to significantly higher concentrations of benzo[a]pyrene (B[a]P) and benzene than the subjects in Prague as measured by personal monitors. Pollution by B[a]P, particulate matter of aerodynamic diameter <2.5 µm (PM2.5) and benzene in the Ostrava region measured by stationary monitors was also higher than in Prague, with the exception of PM2.5 in summer 2009 when concentration of the pollutant was significantly elevated in Prague. To evaluate DNA damage in subjects from both locations we determined the levels of bulky DNA adducts in peripheral blood lymphocytes using the (32)P-postlabeling method. Despite higher B[a]P air pollution in the Ostrava region during all sampling periods, the levels of B[a]P-like DNA adducts per 10(8) nucleotides were significantly higher in the Ostrava subjects only in winter 2009 (mean ± SD: 0.21 ± 0.06 versus 0.28 ± 0.08 adducts/10(8) nucleotides, P < 0.001 for Prague and Ostrava subjects, respectively; P < 0.001). During the other two sampling periods, the levels of B[a]P-like DNA adducts were significantly higher in the Prague subjects (P < 0.001). Multivariate analyses conducted among subjects from Ostrava and Prague separately during all sampling periods revealed that exposure to B[a]P and PM2.5 significantly increased levels of B[a]P-like DNA adducts in the Ostrava subjects, but not in subjects from Prague.
Collapse
Affiliation(s)
- Pavel Rossner
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Duarte-Salles T, Mendez MA, Morales E, Bustamante M, Rodríguez-Vicente A, Kogevinas M, Sunyer J. Dietary benzo(a)pyrene and fetal growth: effect modification by vitamin C intake and glutathione S-transferase P1 polymorphism. ENVIRONMENT INTERNATIONAL 2012; 45:1-8. [PMID: 22565211 PMCID: PMC3855239 DOI: 10.1016/j.envint.2012.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 05/13/2023]
Abstract
BACKGROUND Previous studies have reported maternal exposure to airborne polycyclic aromatic hydrocarbons (PAH), as well as DNA adducts reflecting total PAH exposure, to be associated with reduced fetal growth. The role of diet, the main source of PAH exposure among non-smokers, remains uncertain. OBJECTIVE To assess associations between birth weight, length and small size for gestational age (SGA) with maternal intakes of the genotoxic PAH benzo(a)pyrene [B(a)P] during pregnancy, exploring potential effect modification by dietary intakes of vitamin C, vitamin E, alpha- and beta-carotene, as well as glutathione S-transferase P1 (GSTP1) polymorphisms, hypothesized to influence PAH metabolism. METHODS 657 women in the INMA (Environment and Childhood) Project from Sabadell (Barcelona) were recruited during the first trimester of pregnancy. Dietary B(a)P and nutrient intakes were estimated from food consumption data. Genotyping was conducted for the Ile105Val variant of GSTP1. Multivariable models were used to assess associations between size at birth and dietary B(a)P, evaluating potential interactions with candidate nutrients and GSTP1 variants. RESULTS There were significant interactions between elevated intakes of vitamin C (above the mean of 189.41 mg/day) and dietary B(a)P during the first trimester of pregnancy in models for birth weight and length (P<0.05), but no interactions were found with other nutrients. B(a)P intakes were associated with significant reductions in birth weight and length (coefficient±SE for a 1-SD increase in B(a)P: -101.63±34.62 g and -0.38±0.16 cm, respectively) among women with low, but not high, vitamin C intakes. Elevated dietary B(a)P was also associated with increased risk of SGA births among women with low dietary vitamin C. Among these women, associations were strongest in those carrying the GSTP1 Val allele, associated with lower contaminant detoxification activity. CONCLUSION Results suggest that dietary B(a)P exposure may impair fetal growth, particularly in genetically susceptible populations, and that increasing maternal intakes of vitamin C may help to reduce any adverse effects.
Collapse
|
21
|
Wilson WB, Campiglia AD. Analysis of co-eluted isomers of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions via solid-phase nanoextraction and time-resolved Shpol'skii spectroscopy. J Chromatogr A 2011; 1218:6922-9. [DOI: 10.1016/j.chroma.2011.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/01/2011] [Accepted: 08/07/2011] [Indexed: 11/30/2022]
|
22
|
Urine from current smokers induces centrosome aberrations and spindle defects in vitro in nonmalignant human cell lines. ACTA ACUST UNITED AC 2011; 203:253-62. [PMID: 21156241 DOI: 10.1016/j.cancergencyto.2010.07.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/14/2010] [Accepted: 07/28/2010] [Indexed: 12/21/2022]
Abstract
Tobacco smoke containing numerous derived chemical carcinogens is the main risk factor for urothelial carcinoma. These carcinogens can induce DNA damage leading to chromosomal instability, which plays a fundamental role in urothelial carcinogenesis. Possible mechanisms could be centrosomal aberrations, which cause defective spindles and may be responsible for genetic instability. We evaluated the effect of urine from never smokers (NS) and current smokers (CS) in concentrations of 0 to 50% on cell proliferation, chromosomes, centrosomes, and the spindle status of normal human dermal fibroblasts and normal human urothelial cells (UROtsa). After 2 weeks of urine treatment, cell cultures were analyzed by centrosome and spindle immunostaining and conventional cytogenetics. Effects were compared to results of untreated controls. Analysis of normal human dermal fibroblasts and UROtsa cells revealed that urine from CS induced higher values of centrosome aberrations in a dose-dependent and cell line-independent manner when compared to cultures treated with urine from NS and untreated controls. Centrosomal alterations correlated with spindle defects and an increase of sporadic chromosomal aberrations. The observations suggest a causative role of chemical carcinogens in urine from CS in the origin of centrosome and spindle defects in vitro leading to chromosomal instability and may be involved in urothelial carcinogenesis.
Collapse
|
23
|
Gabriel U, Steidler A, Trojan L, Michel MS, Seifarth W, Fabarius A. Smoking increases transcription of human endogenous retroviruses in a newly established in vitro cell model and in normal urothelium. AIDS Res Hum Retroviruses 2010; 26:883-8. [PMID: 20666582 DOI: 10.1089/aid.2010.0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human endogenous retroviruses (HERVs) accounting for 9% of the human genome are considered as surrogate markers for genetic instability and as a driving force of genetic variation. Moreover, they modulate regular gene activities and give rise to expression of disease-associated peptides that may serve as diagnostic markers or even targets for T cell-based immune responses. To date, no data are available on the potential link between urothelial carcinogenesis, HERV activity, and tobacco smoking, the main risk for bladder cancer. Here, we report on potential alterations in HERV transcription induced by smoking in a newly established in vitro model and in human urothelium. Normal human dermal fibroblasts were cultivated with urine from never (n = 6) and current smokers (n = 6) and transcription levels for the HERV subfamilies HERV-E 4-1, HERV-T S71-TK1, and HERV-K HML-6 were measured by quantitative real-time PCR. Tendencies toward increased mean transcript levels were detected for cells treated with urine from current smokers. Equally, activity measured in human urothelium supported an increase of HERV transcription in current smokers (n = 9) compared to never smokers (n = 4).
Collapse
Affiliation(s)
- Ute Gabriel
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | - Annette Steidler
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | - Lutz Trojan
- Department of Urology, University of Heidelberg, Mannheim, Germany
| | | | - Wolfgang Seifarth
- Medical Clinic III, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | - Alice Fabarius
- Medical Clinic III, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Hunter S, Myers S, Radmacher P, Eno C. Detection of Polycyclic Aromatic Hydrocarbons (PAHs) in Human Breast Milk. Polycycl Aromat Compd 2010. [DOI: 10.1080/10406638.2010.483629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Smoking during pregnancy is associated with higher dietary intake of polycyclic aromatic hydrocarbons and poor diet quality. Public Health Nutr 2010; 13:2034-43. [PMID: 20444315 DOI: 10.1017/s1368980010001278] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To estimate the dietary intake of total polycyclic aromatic hydrocarbons (PAH) and benzo(a)pyrene (BaP), and to characterise factors associated with higher intake during pregnancy. Recent studies suggest that prenatal exposure to PAH is associated with adverse reproductive outcomes. Other than tobacco smoke and occupational exposures, diet is the main source of human PAH exposure. DESIGN Prospective birth cohort study. Dietary exposure to total PAH and BaP was calculated combining food consumption data and estimated PAH concentrations in foods. One-way ANOVA was used to assess differences in intake among non-smokers, passive or active smokers. Linear regression was used to assess factors related to higher intake, and associations between dietary PAH and birth weight. SETTING Sabadell, Spain, 2004-2006. SUBJECTS Women (n 657) recruited during the first trimester of pregnancy. RESULTS The mean dietary intake of BaP and total PAH was significantly higher among active (0·199 and 10·207 μg/d, respectively) and passive smokers (0·196 and 9·458 μg/d) than among non-smokers (0·181 and 8·757 μg/d; P value < 0·005). Maternal age, educational level and region of origin were also associated with higher BaP intake. In all women, major contributors to PAH intake were processed/cured meats, cereals/potatoes and shellfish. Elevated first trimester dietary BaP was associated with a significant reduction in birth weight (fourth v. first quartile: β = -142·73 g, P value < 0·05). CONCLUSIONS Active and passive smokers had higher dietary PAH exposure during pregnancy because of higher intake of processed meats and shellfish. As tobacco smoke is an additional route of PAH exposure, the added dietary burden in these women is of concern.
Collapse
|
26
|
Pavanello S, Pesatori AC, Dioni L, Hoxha M, Bollati V, Siwinska E, Mielzyńska D, Bolognesi C, Bertazzi PA, Baccarelli A. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 2009; 31:216-21. [PMID: 19892797 DOI: 10.1093/carcin/bgp278] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Shorter telomere length (TL) in peripheral blood lymphocytes (PBLs) is predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens that cause chromosome instability. Whether PAH exposure and its molecular effects are linked with shorter TL has never been evaluated. In the present study, we investigated the effect of chronic exposure to PAHs on TL measured in PBLs of Polish male non-current smoking cokeoven workers and matched controls. PAH exposure and molecular effects were characterized using measures of internal dose (urinary 1-pyrenol), effective dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei, MN) and DNA methylation [p53 promoter and Alu and long interspersed nuclear element-1 (LINE-1) repetitive elements, as surrogate measures of global methylation] in PBLs. TL was measured by real-time polymerase chain reaction. Cokeoven workers were heavily exposed to PAHs (79% exceeded the urinary 1-pyrenol biological exposure index) and exhibited lower TL (P = 0.038) than controls, as well as higher levels of genetic and chromosomal alterations [i.e. anti-BPDE-DNA adduct and MN (P < 0.0001)] and epigenetic changes [i.e. p53 gene-specific promoter and global methylation (P <or= 0.001)]. TL decreased with longer duration of work as cokeoven worker (P = 0.039) and in all subjects with higher levels of anti-BPDE-DNA adduct (P = 0.042), p53 hypomethylation (P = 0.005) and MN (P = 0.009). In multivariate analysis, years of work in cokery (P = 0.008) and p53 hypomethylation (P = 0.001) were the principal determinants of shorter TL. Our results indicate that shorter TL is associated with chronic PAH exposure. The interrelations with other genetic and epigenetic mechanisms in our data suggest that shorter TL could be a central event in PAH carcinogenesis.
Collapse
Affiliation(s)
- Sofia Pavanello
- Department of Environmental Medicine and Public Health, Università of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang M, Cheng G, Balbo S, Carmella SG, Villalta PW, Hecht SS. Clear differences in levels of a formaldehyde-DNA adduct in leukocytes of smokers and nonsmokers. Cancer Res 2009; 69:7170-4. [PMID: 19738046 DOI: 10.1158/0008-5472.can-09-1571] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formaldehyde is considered carcinogenic to humans by the IARC, but there are no previous reports of formaldehyde-DNA adducts in humans. In this study, we used liquid chromatography-electrospray ionization-tandem mass spectrometry to quantify the formaldehyde-DNA adduct N(6)-hydroxymethyldeoxyadenosine (N(6)-HOMe-dAdo) in leukocyte DNA samples from 32 smokers of >or=10 cigarettes per day and 30 nonsmokers. Clear peaks coeluting with the internal standard in two different systems were seen in samples from smokers but rarely in nonsmokers. N(6)-HOMe-dAdo was detected in 29 of 32 smoker samples (mean +/- SD, 179 +/- 205 fmol/micromol dAdo). In contrast, it was detected in only 7 of 30 nonsmoker samples (15.5 +/- 33.8 fmol/micromol dAdo; P < 0.001). The results of this study show remarkable differences between smokers and nonsmokers in levels of a leukocyte formaldehyde-DNA adduct, suggesting a potentially important and previously unrecognized role for formaldehyde as a cause of cancer induced by cigarette smoking.
Collapse
Affiliation(s)
- Mingyao Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
28
|
Pavanello S, Bollati V, Pesatori AC, Kapka L, Bolognesi C, Bertazzi PA, Baccarelli A. Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int J Cancer 2009; 125:1692-7. [PMID: 19521983 DOI: 10.1002/ijc.24492] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the effect of chronic exposure to polycyclic aromatic hydrocarbons (PAHs) on DNA methylation states (percentage of methylated cytosines (%mC)) in Polish male nonsmoking coke-oven workers and matched controls. Methylation states of gene-specific promoters (p53, p16, HIC1 and IL-6) and of Alu and LINE-1 repetitive elements, as surrogate measures of global methylation, were quantified by pyrosequencing in peripheral blood lymphocytes (PBLs). DNA methylation was evaluated in relation to PAH exposure, assessed by urinary 1-pyrenol and anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA adduct levels, a critical genetic damage from B[a]P. We also evaluated whether PAH-induced DNA methylation states were in turn associated with micronuclei in PBLs, an indicator of chromosomal instability.
Collapse
Affiliation(s)
- Sofia Pavanello
- Occupational Health Section, Department of Environmental Medicine and Public Health, University of Padova, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Jiang Y, Fu J, Greenlee AR, Shen Y, Duan H, Chen X. Effects of silencing of HER2/neu gene in anti-BPDE-transformed cells. Toxicol In Vitro 2009; 23:53-9. [DOI: 10.1016/j.tiv.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 09/27/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
|
30
|
Pavanello S, Kapka L, Siwinska E, Mielzyñska D, Bolognesi C, Clonfero E. Micronuclei related to anti-B[a]PDE-DNA adduct in peripheral blood lymphocytes of heavily polycyclic aromatic hydrocarbon-exposed nonsmoking coke-oven workers and controls. Cancer Epidemiol Biomarkers Prev 2008; 17:2795-9. [PMID: 18843025 DOI: 10.1158/1055-9965.epi-08-0346] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Micronuclei (MN) frequency associated to biologically effective dose of polycyclic aromatic hydrocarbons [PAH; anti-benzo[a]pyrene diolepoxide (B[a]PDE)-DNA] within the same subjects' peripheral blood lymphocytes (PBL) was evaluated. Study subjects were nonsmoking male Polish coke-oven workers (n=49) and matched controls (n=45) verified for PAH exposure by urinary 1-pyrenol. We found that coke-oven workers, heavily exposed to PAHs (80% workers exceeded the urinary 1-pyrenol biological exposure index value), presented significantly higher MN frequency in PBLs than controls (P<0.01). Substantial difference was also found for adduct levels in PBLs (P<0.01). Increase in MN levels was significantly related to anti-B[a]PDE-DNA formation, key adduct of the ultimate carcinogenic metabolite of B[a]P (n=94; r=0.47; P<0.001). The dose-response relationship was improved when subjects with adduct levels above the 3rd tertile (>or=4.35 adducts/10(8) nucleotides) were excluded (n=61; r=0.69; P<0.001). Saturation of adduct/MN formation at high levels may disturb the underlying relationship. Linear multiple regression analysis, without subjects of 3rd tertile adduct level (n=61), revealed that adduct formation (t=4.61; P<0.001), but not 1-pyrenol, was the significant determinant in increasing MN. In conclusion, the increase in MN frequency is mainly related to the specific anti-B[a]PDE-DNA formation within PBLs of the same subject. Our results substantiate, with the use of an early indicator of biological effect as well, that workers are at higher cancer risk than controls.
Collapse
Affiliation(s)
- Sofia Pavanello
- Occupational Health Section, Department of Environmental Medicine and Public Health, University of Padova, via Giustiniani 2, Padova, 35128 Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Chiang PC, Means JC. Quantification of Benzo[a]pyrene-Guanine Adducts inin vitroSamples by LC Tandem Mass Spectrometry with Stable Isotope Internal Standardization. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802480180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Po-Chang Chiang
- a Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale, Illinois, USA
| | - Jay C. Means
- a Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale, Illinois, USA
| |
Collapse
|
32
|
Abstract
Diet-related mutagenesis plays an etiologic role in chronic diseases, including cardiovascular disease and cancer. Many dietary mutagens are DNA reactive, leading to distinct spectra of base-pair substitution mutations and structural chromosome changes. Examples include aflatoxin B1, ochratoxin A, ptaquiloside, various pyrrolizidine alkaloids, heterocyclic amines including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and polycyclic aromatic hydrocarbons such as benzo[a]pyrene. However, endogenously or exogenously formed reactive species, inhibitors of topoisomerase II enzymes (e.g., flavonoids), of DNA repair (e.g., caffeine), or of the mitotic spindle (possibly acrylamide), also cause mutations, including structural chromosome changes and copy number variants. Genomic instability also results from inadequate nutrient intake (e.g., folate and selenium). Antimutagens include vitamin C, carotenoids, chlorophyllin, dietary fibers, and plant polyphenols acting through various mechanisms. Polymorphisms in genes for nutrient uptake, metabolism, and excretion will affect dietary intake in determining individual risk of disease development. Human studies utilizing nutrigenomic/nutrigenetic technologies will be essential to quantifying and overcoming diet-related mutagenesis.
Collapse
Affiliation(s)
- Lynnette R. Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Martin Philpott
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| |
Collapse
|
33
|
Shen M, Chapman RS, He X, Liu LZ, Lai H, Chen W, Lan Q. Dietary factors, food contamination and lung cancer risk in Xuanwei, China. Lung Cancer 2008; 61:275-82. [PMID: 18304686 DOI: 10.1016/j.lungcan.2007.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 12/17/2007] [Accepted: 12/30/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND In rural Xuanwei County, China, the high incidence of lung cancer is attributable largely to burning smoky coal indoors for heating and cooking without adequate ventilation. Such burning generates very high levels of indoor air pollutants, including carcinogenic polycyclic aromatic hydrocarbons, which could contaminate foodstuffs in the home. Thus, residents could be exposed to carcinogenic coal emissions not only via inhalation but also via ingestion of these foodstuffs. METHODS A population-based case-control study of 498 lung cancer patients and 498 controls was conducted from 1985 through 1990 in Xuanwei. The interviewer-administered study questionnaire queried the frequency of food items commonly consumed in this region. Overall and sex-specific multiple logistic regression models were constructed to estimate Odds ratios (OR) and 95% confidence intervals (CI) for consumption of these foods. RESULTS Intake of rice, green vegetables, mushrooms and fresh meat was associated with an increased risk of lung cancer. In contrast, intake of corn, buckwheat, radishes, peppers, melons, pickled vegetables, and salt-preserved meats was associated with reduced risk. The detrimental effect of ingesting green vegetables (OR, 2.39; 95% CI, 1.28-4.48) is consistent with previous reports. CONCLUSIONS These findings suggest that in Xuanwei, food contamination by environmental polycyclic aromatic hydrocarbons may be an important risk factor for lung cancer, and that differential contamination of foods by polycyclic aromatic hydrocarbons possibly explained the different associations with lung cancer risk.
Collapse
Affiliation(s)
- Min Shen
- Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, MD, United States.
| | | | | | | | | | | | | |
Collapse
|
34
|
Influence of GSTM1 null and low repair XPC PAT+ on anti-B[a]PDE-DNA adduct in mononuclear white blood cells of subjects low exposed to PAHs through smoking and diet. Mutat Res 2007; 638:195-204. [PMID: 18035379 DOI: 10.1016/j.mrfmmm.2007.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/03/2007] [Accepted: 10/10/2007] [Indexed: 11/23/2022]
Abstract
The influence of low-activity NER genotypes (XPC PAT-/+, XPA-A23G, XPD Asp312Asn, XPD Lys751Gln) and GSTM1 (active or null) was evaluated on anti-benzo[a]pyrene diol epoxide-(B[a]PDE)-DNA adduct formed in the lymphocyte plus monocyte fraction (LMF). The sample population consisted of 291 healthy subjects with low exposure to polycyclic aromatic hydrocarbons (PAHs) (B[a]P) through their smoking (n=126 smokers) or dietary habits (n=165 non-smokers with high (>or=52 times/year) consumption of charcoaled meat or pizza). The bulky anti-B[a]PDE-DNA adduct levels were detected by HPLC/fluorescence analysis and genotypes by PCR. Anti-B[a]PDE-DNA was present (>or=0.5 adducts/10(8) nucleotides) in 163 (56%) subjects (median (range) 0.77 (0.125-32.0) adducts/10(8) nucleotides), with smokers showing a significantly higher adduct level than non-smokers with high consumption of PAH-rich meals (P<0.01). Our exposed-sample population with unfavourable XPC PAT+/- or +/+ and GSTM1 null genotypes has the significantly highest adduct level (P<0.01). Taking into account tobacco smoke and diet as sources of exposure to B[a]P, low-activity XPC PAT+ shows a major role in smokers (P<0.05) and GSTM1 null in non-smokers with frequent consumption of PAH-rich meals (P<0.01). The modulation of anti-B[a]PDE-DNA adduct in the LMF by GSTM1 null and low-activity XPC PAT+ polymorphisms may be considered as potential genetic susceptibility factors that can modify individual responses to low PAH (B[a]P) genotoxic exposure, with the consequent risk of cancer in the general population.
Collapse
|