1
|
Tug T, Duda JC, Menssen M, Bruce SW, Bringezu F, Dammann M, Frötschl R, Harm V, Ickstadt K, Igl BW, Jarzombek M, Kellner R, Lott J, Pfuhler S, Plappert-Helbig U, Rahnenführer J, Schulz M, Vaas L, Vasquez M, Ziegler V, Ziemann C. In vivo alkaline comet assay: Statistical considerations on historical negative and positive control data. Regul Toxicol Pharmacol 2024; 148:105583. [PMID: 38401761 DOI: 10.1016/j.yrtph.2024.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The alkaline comet assay is frequently used as in vivo follow-up test within different regulatory environments to characterize the DNA-damaging potential of different test items. The corresponding OECD Test guideline 489 highlights the importance of statistical analyses and historical control data (HCD) but does not provide detailed procedures. Therefore, the working group "Statistics" of the German-speaking Society for Environmental Mutation Research (GUM) collected HCD from five laboratories and >200 comet assay studies and performed several statistical analyses. Key results included that (I) observed large inter-laboratory effects argue against the use of absolute quality thresholds, (II) > 50% zero values on a slide are considered problematic, due to their influence on slide or animal summary statistics, (III) the type of summarizing measure for single-cell data (e.g., median, arithmetic and geometric mean) may lead to extreme differences in resulting animal tail intensities and study outcome in the HCD. These summarizing values increase the reliability of analysis results by better meeting statistical model assumptions, but at the cost of information loss. Furthermore, the relation between negative and positive control groups in the data set was always satisfactorily (or sufficiently) based on ratio, difference and quantile analyses.
Collapse
Affiliation(s)
- Timur Tug
- Department of Statistics, TU Dortmund University, Dortmund, Germany.
| | - Julia C Duda
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Max Menssen
- Institute of Cell Biology and Biophysics, Department of Biostatistics, Leibniz University Hannover, Germany
| | | | - Frank Bringezu
- Merck Healthcare KGaA, Chemical and Preclinical Safety, Darmstadt, Germany
| | | | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | | - Katja Ickstadt
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Bernd-Wolfgang Igl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | | | | | | | | | | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| |
Collapse
|
2
|
Dirven Y, Eide DM, Henriksson EW, Hjorth R, Sharma AK, Graupner A, Brunborg G, Ballangby J, Boisen AMZ, Swedmark S, Gützkow KB, Olsen AK. Assessing testicular germ cell DNA damage in the comet assay; introduction of a proof-of-concept. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:88-104. [PMID: 36629742 DOI: 10.1002/em.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.
Collapse
Affiliation(s)
- Yvette Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Dag Markus Eide
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Erika Witasp Henriksson
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Proposals for Classification and Restriction, Sundbyberg, Sweden
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Rune Hjorth
- The Danish Environmental Protection Agency, Odense, Denmark
| | - Anoop Kumar Sharma
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Anne Graupner
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Jarle Ballangby
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | | | - Stellan Swedmark
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Kristine Bjerve Gützkow
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Ann-Karin Olsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| |
Collapse
|
3
|
Lim C, Shin K, Seo D. Genotoxicity study of 2-methoxyethanol and benzalkonium chloride through Comet assay using 3D cultured HepG2 cells. Environ Anal Health Toxicol 2022; 37:e2022031-0. [PMID: 36916044 PMCID: PMC10014747 DOI: 10.5620/eaht.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Though the key data in identifying carcinogenicity is experience in human, long-term carcinogenicity tests using experimental animals are more realistic. Because carcinogenicity tests require much time and cost, performing the test is minimized through pre-screening. Recently, as bioethics has been strengthened, it is required to minimize animal testing in screening tests as well as carcinogenicity tests. The replacement of the micronucleus assay in experimental animal is the beginning, and the ultimate goal is to replace the carcinogenicity test using experimental animals. The micronucleus assay and the comet assay in 3D culture system of human-derived cells is considered as the most applicable practical measures at this stage. This study was conducted to provide more diverse information in the evaluation of carcinogenicity by establishing the comet test method in a three-dimensional cell culture system. In this study, HepG2 cells were cultured for 4 days in hang-in drop method, and then cultured for 7 days on a low adhesion plate to prepare spheroids. The methods were confirmed by d-mannitol (negative control), ethylmethane sulfonate (positive control), and cyclophosphamide (positive control for metabolite). 2-methoxyethanol and benzalkonium chloride were selected as test substances. Though 2-methoxyethanol is positive in in vivo comet assay and in vitro mammalian chromosome aberration test, it is considered negative in the comprehensive genotoxicity evaluation based on negative in bacterial reverse mutation assay, in vitro mammalian cell gene mutation test and mammalian chromosome aberration test. Benzalkonium chloride has been questioned on carcinogenicity because it is a disinfectant ingredient that has become a social issue in Korea. As a result of the Comet assay for 2-methoxyethanol and benzalkonium chloride in the cultured HepG2 cell line, 2-methoxyethanol was evaluated as positive in the metabolic activation system, but benzalkonium chloride was evaluated as negative in both the presence and absence of the metabolic activation system. Therefore, in order to clarify the carcinogenic potential of 2-methoxyethanol, it is judged that additional studies based on mechanistic studies are needed.
Collapse
Affiliation(s)
- Cheolhong Lim
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Kyungmin Shin
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Dongseok Seo
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| |
Collapse
|
4
|
Koterov AN. Causal Criteria in Medical and Biological Disciplines: History, Essence, and Radiation Aspect. Report 3, Part 2: Hill’s Last Four Criteria: Use and Limitations. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
6
|
Platel A, Dusautoir R, Kervoaze G, Dourdin G, Gateau E, Talahari S, Huot L, Simar S, Ollivier A, Laine W, Kluza J, Gosset P, Garçon G, Anthérieu S, Guidice JML, Nesslany F. Comparison of the in vivo genotoxicity of electronic and conventional cigarettes aerosols after subacute, subchronic and chronic exposures. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127246. [PMID: 34844363 DOI: 10.1016/j.jhazmat.2021.127246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.
Collapse
Affiliation(s)
- Anne Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Romain Dusautoir
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Gonzague Dourdin
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Eulalie Gateau
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Smaïl Talahari
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Ludovic Huot
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sophie Simar
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Anaïs Ollivier
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - William Laine
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Jérôme Kluza
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sébastien Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Fabrice Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
7
|
Thompson CM, Aardema MJ, Heintz MM, MacGregor JT, Young RR. A review of mammalian in vivo genotoxicity of hexavalent chromium: implications for oral carcinogenicity risk assessment. Crit Rev Toxicol 2022; 51:820-849. [DOI: 10.1080/10408444.2021.2000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Tu H, Yu C, Tong W, Zhou C, Li R, Huang P, Wang Q, Chang Y. Evaluation of the Liver and Blood Micronucleus, and Comet Assay Endpoints in a 14-Day Repeated Dose Study with Methyl Carbamate and 1, 3-Propane Sultone. Mutagenesis 2021; 36:401-406. [PMID: 34516639 DOI: 10.1093/mutage/geab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022] Open
Abstract
The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1, 3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Sprague Dawley rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of 5 male Sprague Dawley rats were treated once daily with MC (300, 600, or 1200 mg/kg/day), PS (37.5, 75, or 150 mg/kg/day), negative control, or 3 positive controls by oral gavage for 15 days. Blood samples were collected at 3 hours after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay, and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated dose studies in animals. Moreover, integration of multiple genotoxicity endpoints into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.
Collapse
Affiliation(s)
- Honggang Tu
- School of Pharmacy, Shanghai Jiao Tong University, China.,Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Chunrong Yu
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Wen Tong
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Ruowan Li
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qingli Wang
- Center for Drug Evaluation, National Medical Products Administration (China Food and Drug Administration), Beijing, China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co. Ltd/National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
9
|
Chen L, Li N, Liu Y, Faquet B, Alépée N, Ding C, Eilstein J, Zhong L, Peng Z, Ma J, Cai Z, Ouedraogo G. A new 3D model for genotoxicity assessment: EpiSkin™ Micronucleus Assay. Mutagenesis 2021; 36:51-61. [PMID: 32067034 DOI: 10.1093/mutage/geaa003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/14/2020] [Indexed: 11/12/2022] Open
Abstract
The European Regulation on Cosmetics (no. 1223/2009) has prohibited the use of animals in safety testing since March 2009 for ingredients used in cosmetics. Irreversible events at the chromosome level (clastogenesis and aneugenesis) are commonly evaluated by scoring either micronuclei or chromosome aberrations using cell-based genotoxicity assays. Like most in vitro genotoxicity assays, the 2D in vitro micronucleus assay exhibits a poor specificity and does not mimic the dermal route. To address these limitations, the current project aims to develop and validate a 3D micronucleus assay using the EpiSkin™ model. This project is scientifically supported by the Cosmetics Europe Genotoxicity Task Force. In a first step, two key criteria for the development of micronucleus assay, namely, the sufficient yield of cells from the EpiSkin™ model and an acceptable proliferation rate of the basal layer, were assessed and demonstrated. Subsequently, six chemicals (vinblastine, n-ethylnitrosourea, β-butyrolactone, 2-acetylaminofluorene, 2,4-dichlorophenoland d-limonene) were evaluated in the EpiSkin™ Micronucleus Assay. At least two independent experiments using 48- and 72-h incubations were performed for each chemical. Results showed good inter-experimental reproducibility, as well as the correct identification of all six tested chemicals. The metabolism of 2-acetylaminofluorene on the EpiSkin™ model was also investigated and confirmed by the formation of an intermediate metabolite (2-aminofluorene). These preliminary results from the EpiSkin™ Micronucleus Assay indicate that it is a promising in vitro assay for assessing genotoxicity. The availability and suitability of this test method contribute significantly to the development of non-animal testing methods in China and its impact on the worldwide field.
Collapse
Affiliation(s)
- Lizao Chen
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Nan Li
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Yanfeng Liu
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Brigitte Faquet
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Nathalie Alépée
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Chunmei Ding
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Lingyan Zhong
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhengang Peng
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Jie Ma
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Zhenzi Cai
- Advanced Research, L'Oréal Research and Innovation China, Shanghai, China
| | - Gladys Ouedraogo
- Advanced Research, L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| |
Collapse
|
10
|
Pfuhler S, Pirow R, Downs TR, Haase A, Hewitt N, Luch A, Merkel M, Petrick C, Said A, Schäfer-Korting M, Reisinger K. Validation of the 3D reconstructed human skin Comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis 2021; 36:19-35. [PMID: 32152633 PMCID: PMC8081376 DOI: 10.1093/mutage/geaa009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
As part of the safety assessment process, all industrial sectors employ genotoxicity test batteries, starting with well-established in vitro assays. However, these batteries have limited predictive capacity for the in vivo situation, which may result in unnecessary follow-up in vivo testing or the loss of promising substances where animal tests are prohibited or not desired. To address this, a project involving regulators, academia and industry was established to develop and validate in vitro human skin-based genotoxicity assays for topically exposed substances, such as cosmetics ingredients. Here, we describe the validation of the 3D reconstructed skin (RS) Comet assay. In this multicenter study, chemicals were applied topically three times to the skin over 48 h. Isolated keratinocytes and fibroblasts were transferred to slides before electrophoresis and the resulting comet formation was recorded as % tail DNA. Before decoding, results of the validation exercise for 32 substances were evaluated by an independent statistician. There was a high predictive capacity of this assay when compared to in vivo outcomes, with a sensitivity of 77 (80)%, a specificity of 88 (97)% and an overall accuracy of 83 (92)%. The numbers reflect the calls of the performing laboratories in the coded phase, whereas those in parenthesis reflect calls according to the agreed evaluation criteria. Intra- and inter-laboratory reproducibility was also very good, with a concordance of 93 and 88%, respectively. These results generated with the Phenion® Full-Thickness skin model demonstrate its suitability for this assay, with reproducibly low background DNA damage and sufficient metabolic capacity to activate pro-mutagens. The validation outcome supports the use of the RS Comet assay to follow up positive results from standard in vitro genotoxicity assays when the expected route of exposure is dermal. Based on the available data, the assay was accepted recently into the OECD test guideline development program.
Collapse
Affiliation(s)
| | - Ralph Pirow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | | | - André Said
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
- Freie Universität Berlin, Institute for Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute for Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | | |
Collapse
|
11
|
A weight of evidence assessment of the genotoxicity of 2,6-xylidine based on existing and new data, with relevance to safety of lidocaine exposure. Regul Toxicol Pharmacol 2021; 119:104838. [DOI: 10.1016/j.yrtph.2020.104838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/31/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022]
|
12
|
Statistical analysis of in vivo alkaline comet assay data - Comparison of median and geometric mean as centrality measures. Regul Toxicol Pharmacol 2020; 118:104808. [PMID: 33127357 DOI: 10.1016/j.yrtph.2020.104808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
The comet assay is one of the standard tests for evaluating the genotoxic potential of a test item able to detect DNA strand breaks in cells or isolated nuclei from various tissues. The in vivo alkaline comet assay is part of the standard test battery, given in option 2 of the ICH guidance S2 (R1) and a follow-up test in the EFSA framework on genotoxicity testing. The current OECD guideline for the testing of chemicals No. 489 directly affects the statistical analysis of comet data as it suggests using the median per slide and the mean of all medians per animal. However, alternative approaches can be used if scientifically justified. In this work, we demonstrated that the selection of different centrality measures to describe an average value per slide may lead to fundamentally different statistical test results and contradicting interpretations. Our focus was on geometric means and medians per slide for the primary endpoint "tail intensity". We compared both strategies using original and simulated data in different experimental settings incl. a varying number of animals, slides and cells per slide. In general, it turned out that the chosen centrality measure has an immense impact on the final statistical test result.
Collapse
|
13
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Bastaki M, Linman MJ, Taylor SV. The safety evaluation of food flavoring substances: the role of genotoxicity studies. Crit Rev Toxicol 2020; 50:1-27. [PMID: 32162576 DOI: 10.1080/10408444.2020.1712589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either in vitro or in vivo. The Panel has reviewed a large number of in vitro and in vivo genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.
Collapse
Affiliation(s)
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern (retired), Heidelberg, Germany
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Matthew J Linman
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| |
Collapse
|
14
|
Corvaro M, Gollapudi BB, Mehta J. A critical Assessment of the Genotoxicity Profile of the Fungicide Tricyclazole. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:300-315. [PMID: 31633836 DOI: 10.1002/em.22344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Tricyclazole (8-methyl-[1,2,4]triazolo[3,4-b][1,3]benzothiazole) is a fungicide used globally on rice for treatment of the seasonal rice blast disease. Human exposure to this fungicide can occur via dietary and nondietary routes. In a battery of in vitro assays, tricyclazole did not induce gene mutations in bacteria (Ames test) or at the Hprt locus of CHO cells. It was also negative for the induction of micronuclei in human lymphocyte cultures and unscheduled DNA synthesis (UDS) in primary rat hepatocyte. Paradoxically, tricyclazole induced a mutagenic response at the Tk locus of the mouse lymphoma L5178Ycells (MLA), which occurred equally among small/large colony phenotypes. Selection of preexisting mutants leading to a false-positive response in the MLA was ruled out in follow-up experiments. In vivo, tricyclazole was negative in the rat liver UDS assay, mouse bone micronucleus test and a transgenic (MutaMouse) gene mutation assay in glandular stomach, liver, and kidney. Other supporting evidence for the lack of genotoxicity for tricyclazole comes from an in vivo study for sister chromatid exchanges in Chinese hamsters, and a dominant lethal test in the male germ cells of mice. The combined evidence from the genotoxicity studies together with the evidence from toxicokinetic, carcinogenicity, developmental, and reproductive toxicity studies confirm that mutagenicity does not occur in relevant in vivo systems. Data were also compared to potential animal and human exposure, mechanistic data on biological targets and data on analogues, confirming adequacy of the available data for hazard identification and risk assessment. Environ. Mol. Mutagen. 61:300-315, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Corvaro
- Dow AgroSciences, Abingdon, Oxfordshire, United Kingdom
| | - B Bhaskar Gollapudi
- Exponent, Center for Toxicology and Mechanistic Biology, Midland, Michigan, USA
| | | |
Collapse
|
15
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
16
|
Igarashi T, Suzuki H, Ushida K, Matsumoto M, Inoue K, Kanno T, Miwa Y, Ishii T, Nagase T, Katsumata Y, Hirose A. Initial hazard assessment of 1,4-dichlorobutane: Genotoxicity tests, 28-day repeated-dose toxicity test, and reproductive/developmental toxicity screening test in rats. Regul Toxicol Pharmacol 2020; 112:104610. [PMID: 32032664 DOI: 10.1016/j.yrtph.2020.104610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 11/27/2022]
Abstract
1,4-Dichlorobutane (1,4-DCB) is used as raw materials for drugs, pesticides, fragrances, and chemical fibers, and being used as a solvent. Its toxicity data was insufficient for screening assessment under the Japanese Chemical Substances Control Law. We conducted toxicity tests and hazard classification for screening assessment 1,4-DCB showed negative in the Ames test, positive in the in vitro chromosomal aberrations test with metabolic activation, and negative in the in vivo mouse bone-marrow micronucleus test. The 28-day repeated-dose toxicity study, where male and female rats were administered 1,4-DCB by gavage at 0, 12, 60, and 300 mg/kg/day, showed significant effects on the liver and pancreas from 12 mg/kg/day and kidney at 300 mg/kg/day. Based on periportal hepatocellular hypertrophy and decreased zymogen granules in pancreas, the lowest observed adverse effect level (LOAEL) of 12 mg/kg/day was obtained. The reproductive/developmental toxicity screening study, in which male and female rats were administered 1,4-DCB by gavage at dose of 0, 2.4, 12, and 60 mg/kg/day for 42-46 days, showed that the delivery index was decreased at 60 mg/kg/day without maternal toxicity. Based on the general toxicity, we classified this chemical as hazard class 2, with a D-value (Derived No Effect Level) of 0.002 mg/kg/day.
Collapse
Affiliation(s)
- Toshime Igarashi
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan; Division of Cellular & Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Hiroshi Suzuki
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Kazuo Ushida
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Mariko Matsumoto
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Kaoru Inoue
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Takuya Kanno
- CMIC Pharma Science Co., Ltd., CMIC Bioresearch Center, 10221 Kobuchizawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Yoshihisa Miwa
- Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima-shi, Gifu, 501-6251, Japan.
| | - Takahiro Ishii
- BoZo Research Center Inc., 1284 Kamado, Gotennba-shi, Shizuoka, 412-0039, Japan.
| | - Takahiko Nagase
- Nihon Bioresearch Inc., 6-104 Majima, Fukuju-cho, Hashima-shi, Gifu, 501-6251, Japan.
| | - Yoshihiro Katsumata
- BoZo Research Center Inc., 1284 Kamado, Gotennba-shi, Shizuoka, 412-0039, Japan.
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
17
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
18
|
Fujita Y, Honda H, Yamane M, Morita T, Matsuda T, Morita O. A decision tree-based integrated testing strategy for tailor-made carcinogenicity evaluation of test substances using genotoxicity test results and chemical spaces. Mutagenesis 2019; 34:101-109. [PMID: 30551173 DOI: 10.1093/mutage/gey039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Genotoxicity evaluation has been widely used to estimate the carcinogenicity of test substances during safety evaluation. However, the latest strategies using genotoxicity tests give more weight to sensitivity; therefore, their accuracy has been very low. For precise carcinogenicity evaluation, we attempted to establish an integrated testing strategy for the tailor-made carcinogenicity evaluation of test materials, considering the relationships among genotoxicity test results (Ames, in vitro mammalian genotoxicity and in vivo micronucleus), carcinogenicity test results and chemical properties (molecular weight, logKow and 179 organic functional groups). By analyzing the toxicological information and chemical properties of 230 chemicals, including 184 carcinogens in the Carcinogenicity Genotoxicity eXperience database, a decision tree for carcinogenicity evaluation was optimised statistically. A decision forest model was generated using a machine-learning method-random forest-which comprises thousands of decision trees. As a result, balanced accuracies in cross-validation of the optimised decision tree and decision forest model, considering chemical space (71.5% and 75.5%, respectively), were higher than balanced accuracy of an example regulatory decision tree (54.1%). Moreover, the statistical optimisation of tree-based models revealed significant organic functional groups that would cause false prediction in standard genotoxicity tests and non-genotoxic carcinogenicity (e.g., organic amide and thioamide, saturated heterocyclic fragment and aryl halide). In vitro genotoxicity tests were the most important parameters in all models, even when in silico parameters were integrated. Although external validation is required, the findings of the integrated testing strategies established herein will contribute to precise carcinogenicity evaluation and to determine new mechanistic hypotheses of carcinogenicity.
Collapse
Affiliation(s)
- Yurika Fujita
- R&D, Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Hiroshi Honda
- R&D, Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Masayuki Yamane
- R&D, Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| | - Takeshi Morita
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Japan
| | - Osamu Morita
- R&D, Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi, Japan
| |
Collapse
|
19
|
Chen G, Wen H, Mao Z, Song J, Jiang H, Wang W, Yang Y, Miao Y, Wang C, Huang Z, Wang X. Assessment of the Pig-a, micronucleus, and comet assay endpoints in rats treated by acute or repeated dosing protocols with procarbazine hydrochloride and ethyl carbamate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:56-71. [PMID: 30240497 DOI: 10.1002/em.22227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The utility and sensitivity of the newly developed flow cytometric Pig-a gene mutation assay have become a great concern recently. In this study, we have examined the feasibility of integrating the Pig-a assay as well as micronucleus and Comet endpoints into acute and subchronic general toxicology studies. Male Sprague-Dawley rats were treated for 3 or 28 consecutive days by oral gavage with procarbazine hydrochloride (PCZ) or ethyl carbamate (EC) up to the maximum tolerated dose. The induction of CD59-negative reticulocytes and erythrocytes, micronucleated reticulocytes in peripheral blood, micronucleated polychromatic erythrocytes in bone marrow, and Comet responses in peripheral blood, liver, kidney, and lung were evaluated at one, two, or more timepoints. Both PCZ and EC produced positive responses at most analyzed timepoints in all tissue types, both with the 3-day and 28-day treatment regimens. Furthermore, comparison of the magnitude of the genotoxicity responses indicated that the micronucleus and Comet endpoints generally produced greater responses with the higher dose, short-term treatments in the 3-day study, while the Pig-a assay responded better to the cumulative effects of the lower dose, but repeated subchronic dosing in the 28-day study. Collectively, these results indicate that integration of several in vivo genotoxicity endpoints into a single routine toxicology study is feasible and that the Pig-a assay may be particularly suitable for integration into subchronic dose studies based on its ability to accumulate the mutations that result from repeated treatments. This characteristic may be especially important for assaying lower doses of relatively weak genotoxicants. Environ. Mol. Mutagen. 60:56-71, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaofeng Chen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hairuo Wen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhihui Mao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie Song
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Hua Jiang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weifan Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Ying Yang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Yufa Miao
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Chao Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhiying Huang
- Center of Safety Evaluation on New Drug, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xue Wang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| |
Collapse
|
20
|
Schisler MR, Gollapudi BB, Moore MM. Evaluation of U. S. National Toxicology Program (NTP) mouse lymphoma assay data using International Workshop on Genotoxicity Tests (IWGT) and the Organization for Economic Co-Operation and Development (OECD) criteria. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:829-841. [PMID: 30357906 DOI: 10.1002/em.22250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The forward gene mutation mouse lymphoma assay (MLA) is widely used, as part of a regulatory test battery, to identify the genotoxic potential of chemicals. It identifies mutagens capable of inducing a variety of genetic events. During the 1980s and early 1990s, the U.S. National Toxicology Program (NTP) developed a publicly available database (https://tools.niehs.nih.gov/cebs3/ui/) of MLA results. This database is used to define the mutagenic potential of chemicals, to develop structure-activity relationships (SAR), and to draw correlations to animal carcinogenicity findings. New criteria for MLA conduct and data interpretation were subsequently developed by the International Workshop for Genotoxicity Testing (IWGT) and the Organization of Economic Cooperation and Development (OECD). These recommendations are included in a new OECD Test Guideline (TG490). It is essential that early experimental data be re-examined and classified according to the current criteria to build a curated database to better inform chemical-specific evaluations and SAR models. We re-evaluated more than 1900 experiments representing 342 chemicals against the newly defined acceptance criteria for background mutant frequency (MF), cloning efficiency (CE), positive control values (modified for this evaluation due to lack of colony sizing), appropriate dose selection, and data consistency. Only 17% of the evaluated experiments met all acceptance criteria used in this re-evaluation. Results from 211 chemicals were determined to be uninterpretable, 92 were positive, and 39 equivocal. The authors could not classify any responses as negative because colony sizing was not performed for any of these experiments and it is clear, based on many experiment with unacceptably low background and positive control MFs, that mutant colony recovery was often suboptimal. This re-evaluation provides a curated database for the MLA. A similar curation should be done for other widely used genetic toxicology assays, but will be more difficult for certain assays (e.g., in vitro chromosomal aberrations) because important parameters such as level of cytotoxicity were often not evaluated/reported. Environ. Mol. Mutagen. 59:829-841, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - B B Gollapudi
- Exponent, Inc., Center for Health Sciences, Alexandria, Virginia
| | | |
Collapse
|
21
|
Smith CJ, Perfetti TA. The “false-positive” conundrum in the NTP 2-year rodent cancer study database. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318772839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 1990, Ames and Gold described a conundrum of “too many carcinogens” among chemicals tested in rodent bioassays. Their proposed nongenotoxic carcinogenic mechanism was amplification of the background mutation rate via cytotoxicity induced by high doses of the test chemicals, thereby leading to increases in reparative cellular proliferation rates. Recently, we have statistically and mechanistically analyzed the entire 594-study (470 final reports) NTP 2-year rodent cancer database to better understand the conundrum posed by Ames and Gold. Our analysis provides several lines of evidence that support the contention of Ames and Gold. First, across different routes of administration, relatively phylogenetically similar rats and mice are nonetheless discordant for the development of tumors at similar organ sites. Tumor site concordance across sex within species is higher than tumor site concordance across species. Second, many chemicals negative in the Ames test nonetheless induce tumors in either rats or mice. Third, 11 out of 58 chemicals tested by the inhalation route induce lung tumors in mice and not rats, are negative in the Ames test, and exhibit hyperplasia. In 2017, Tomasetti et al. provided evidence for the clinical relevance in humans of the Ames and Gold mechanism regarding amplification of the background mutation rate by demonstrating that the majority of human tumors result from accumulated mutations due to DNA replication errors.
Collapse
Affiliation(s)
- Carr J. Smith
- Department of Nurse Anesthesia, Florida State University, Panama City, FL, USA
| | | |
Collapse
|
22
|
Zeller A, Pfuhler S, Albertini S, Bringezu F, Czich A, Dietz Y, Fautz R, Hewitt NJ, Kirst A, Kasper P. A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis 2018; 33:179-193. [DOI: 10.1093/mutage/gey005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Human Safety, Mason Business Centre, Mason, OH, USA
| | - Silvio Albertini
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | | | - Andreas Czich
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | | | | | | | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee, Bonn, Germany
| |
Collapse
|
23
|
Kirkland D, Fowler P. A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:36-45. [DOI: 10.1016/j.mrgentox.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
|
24
|
Ates G, Mertens B, Heymans A, Verschaeve L, Milushev D, Vanparys P, Roosens NHC, De Keersmaecker SCJ, Rogiers V, Doktorova TY. A novel genotoxin-specific qPCR array based on the metabolically competent human HepaRG™ cell line as a rapid and reliable tool for improved in vitro hazard assessment. Arch Toxicol 2018; 92:1593-1608. [DOI: 10.1007/s00204-018-2172-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/31/2018] [Indexed: 02/01/2023]
|
25
|
Bonassi S, Prinzi G, Lamonaca P, Russo P, Paximadas I, Rasoni G, Rossi R, Ruggi M, Malandrino S, Sánchez-Flores M, Valdiglesias V, Benassi B, Pacchierotti F, Villani P, Panatta M, Cordelli E. Clinical and genomic safety of treatment with Ginkgo biloba L. leaf extract (IDN 5933/Ginkgoselect®Plus) in elderly: a randomised placebo-controlled clinical trial [GiBiEx]. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:22. [PMID: 29357859 PMCID: PMC5778811 DOI: 10.1186/s12906-018-2080-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Numerous health benefits have been attributed to the Ginkgo biloba leaf extract (GBLE), one of the most extensively used phytopharmaceutical drugs worldwide. Recently, concerns of the safety of the extract have been raised after a report from US National Toxicology Program (NTP) claimed high doses of GBLE increased liver and thyroid cancer incidence in mice and rats. A safety study has been designed to assess, in a population of elderly residents in nursing homes, clinical and genomic risks associated to GBLE treatment. METHODS GiBiEx is a multicentre randomized clinical trial, placebo controlled, double blinded, which compared subjects randomized to twice-daily doses of either 120-mg of IDN 5933 (also known as Ginkgoselect®Plus) or to placebo for a 6-months period. IDN 5933 is extracted from dried leaves and contains 24.3% flavone glycosides and 6.1% of terpene lactones (2.9% bilobalide, 1.38% ginkgolide A, 0.66% ginkgolide B, 1.12% ginkgolide C) as determined by HPLC. The study was completed by 47 subjects, 20 in the placebo group and 27 in the treatment group. Clinical (adverse clinical effect and liver injury) and genomic (micronucleus frequency, comet assay, c-myc, p53, and ctnnb1 expression profile in lymphocytes) endpoints were assessed at the start and at the end of the study. RESULTS No adverse clinical effects or increase of liver injury markers were reported in the treatment group. The frequency of micronuclei [Mean Ratio (MR) = 1.01, 95% Confidence Intervals (95% CI) 0.86-1.18), and DNA breaks (comet assay) (MR = 0.91; 95% CI 0.58-1.43), did not differ in the two study groups. No significant difference was found in the expression profile of the three genes investigated. CONCLUSIONS None of the markers investigated revealed a higher risk in the treatment group, supporting the safety of IDN 5933 at doses prescribed and for duration of six months. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03004508 , December 20, 2016. Trial retrospectively registered.
Collapse
Affiliation(s)
- Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Giulia Prinzi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Palma Lamonaca
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Irene Paximadas
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Giuseppe Rasoni
- RSA San Raffaele Rocca di Papa, Via Ariccia, 16, 00040 Rocca di Papa (RM), Italy
| | - Raffaella Rossi
- RSA San Raffaele Sabaudia, via Borgo Nuovo, 04010 Sabaudia (LT), Italy
| | - Marzia Ruggi
- RSA San Raffaele Montecompatri, Via San Silvestro, 67, 00077 Montecompatri (RM), Italy
| | | | - Maria Sánchez-Flores
- DICOMOSA Group, Department of Psychology, Universidade de A Coruña, A Coruña, Spain
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Universidade de A Coruña, A Coruña, Spain
| | - Barbara Benassi
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Paola Villani
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Martina Panatta
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Eugenia Cordelli
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| |
Collapse
|
26
|
Hardy A, Benford D, Halldorsson T, Jeger M, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Younes M, Aquilina G, Crebelli R, Gürtler R, Hirsch-Ernst KI, Mosesso P, Nielsen E, van Benthem J, Carfì M, Georgiadis N, Maurici D, Parra Morte J, Schlatter J. Clarification of some aspects related to genotoxicity assessment. EFSA J 2017; 15:e05113. [PMID: 32625393 PMCID: PMC7009892 DOI: 10.2903/j.efsa.2017.5113] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The European Commission requested EFSA to provide advice on the following: (1) the suitability of the unscheduled DNA synthesis (UDS) in vivo assay to follow‐up positive results in in vitro gene mutation tests; (2) the adequacy to demonstrate target tissue exposure in in vivo studies, particularly in the mammalian erythrocyte micronucleus test; (3) the use of data in a weight‐of‐evidence approach to conclude on the genotoxic potential of substances and the consequent setting of health‐based guidance values. The Scientific Committee concluded that the first question should be addressed in both a retrospective and a prospective way: for future assessments, it is recommended no longer performing the UDS test. For re‐assessments, if the outcome of the UDS is negative, the reliability and significance of results should be carefully evaluated in a weight‐of‐evidence approach, before deciding whether more sensitive tests such as transgenic assay or in vivo comet assay would be needed to complete the assessment. Regarding the second question, the Scientific Committee concluded that it should be addressed in lines of evidence of bone marrow exposure: toxicity to the bone marrow in itself provides sufficient evidence to allow concluding on the validity of a negative outcome of a study. All other lines of evidence of target tissue exposure should be assessed within a weight‐of‐evidence approach. Regarding the third question, the Scientific Committee concluded that any available data that may assist in reducing the uncertainty in the assessment of the genotoxic potential of a substance should be taken into consideration. If the overall evaluation leaves no concerns for genotoxicity, health‐based guidance values may be established. However, if concerns for genotoxicity remain, establishing health‐based guidance values is not considered appropriate.
Collapse
|
27
|
Huang ZH, Li N, Rao KF, Liu CT, Huang Y, Ma M, Wang ZJ. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay. Hum Exp Toxicol 2017; 37:285-294. [PMID: 29233020 DOI: 10.1177/0960327117695635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
Collapse
Affiliation(s)
- Z H Huang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - N Li
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - K F Rao
- 2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - C T Liu
- 3 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Y Huang
- 4 College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - M Ma
- 5 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,6 Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Z J Wang
- 1 State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Magnusson P, Oczkowski M, Øvrevik J, Gajewska M, Wilczak J, Biedrzycki J, Dziendzikowska K, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Brunborg G, Instanes C, Gromadzka-Ostrowska J, Myhre O. No adverse lung effects of 7- and 28-day inhalation exposure of rats to emissions from petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without particulate filter – the FuelHealth project. Inhal Toxicol 2017; 29:206-218. [DOI: 10.1080/08958378.2017.1339149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Malgorzata Gajewska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Katarzyna Dziendzikowska
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Radiobiology and Immunology, Jan Kochanowski University, Kielce, Warsaw, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
30
|
Ji Z, Ball NS, LeBaron MJ. Global regulatory requirements for mutagenicity assessment in the registration of industrial chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:345-353. [PMID: 28543740 DOI: 10.1002/em.22096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Mutagenicity is an important toxicological endpoint that requires thorough evaluation during the industrial chemical registration process. Regulatory requirements for mutagenicity assessment in registration of industrial chemicals vary in geographic regions (and in some cases by intended application). Here we compile the mutagenicity testing requirements for registration of industrial chemicals from representative geographic regions (in alphabetical order), that is Australia, Brazil, Canada, China, European Union (EU), India, Japan, South Korea, Taiwan, and United States (US). We further discuss the challenges that industry is facing to meet global regulations, for example, different testing requirements among geographic regions, different strategies in follow-up tests to in vitro positive findings, no-observed-adverse-effect-levels in genetic toxicity testing, and human relevance of mutagenicity. Environ. Mol. Mutagen. 58:345-353, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiying Ji
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan
| | - Nicholas S Ball
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan
| | - Matthew J LeBaron
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan
| |
Collapse
|
31
|
Booth ED, Rawlinson PJ, Maria Fagundes P, Leiner KA. Regulatory requirements for genotoxicity assessment of plant protection product active ingredients, impurities, and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:325-344. [PMID: 28329407 DOI: 10.1002/em.22084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Active ingredients in plant protection products are subject to rigorous safety assessment during their development, including assessment of genotoxicity. Plant protection products are used for agriculture in multiple regions and for the registration of active ingredients it is necessary to satisfy the data requirements of these different regions. There are no overarching global agreements on which genotoxicity studies need to be conducted to satisfy the majority of regulatory authorities. The implementation of new OECD guidelines for the in vitro micronucleus, transgenic rodent somatic and germ cell gene mutation and in vivo comet assays, as well as the revision of a number of other OECD test guidelines has resulted in some changes to data requirements. This review describes the genotoxicity data requirements for chemical active ingredients as well as biologicals, microbials, ground water metabolites, metabolites, and impurities in a number of regions. Similarities and differences are highlighted. Environ. Mol. Mutagen. 58:325-344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ewan D Booth
- Department of Toxicology and Health Sciences, Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Paul J Rawlinson
- Department of Toxicology and Health Sciences, Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Priscila Maria Fagundes
- Department of Product Safety, Syngenta Protecao de Cultivos Ltda, Sao Paulo, SP, 04795-900, Brazil
| | - Kevin A Leiner
- Department of Toxicology and Health Sciences, Syngenta Crop Protection LLC, Research Triangle Park, North Carolina
| |
Collapse
|
32
|
Galloway SM. International regulatory requirements for genotoxicity testing for pharmaceuticals used in human medicine, and their impurities and metabolites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:296-324. [PMID: 28299826 DOI: 10.1002/em.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The process of developing international (ICH) guidelines is described, and the main guidelines reviewed are the ICH S2(R1) guideline that includes the genotoxicity test battery for human pharmaceuticals, and the ICH M7 guideline for assessing and limiting potentially mutagenic impurities and degradation products in drugs. Key aspects of the guidelines are reviewed in the context of drug development, for example the incorporation of genotoxicity assessment into non-clinical toxicity studies, and ways to develop and assess weight of evidence. In both guidelines, the existence of "thresholds" or non-linear dose responses for genotoxicity plays a part in the strategies. Differences in ICH S2(R1) protocol recommendations from OECD guidelines are highlighted and rationales explained. The use of genotoxicity data during clinical development and in assessment of carcinogenic potential is also described. There are no international guidelines on assessment of potentially genotoxic metabolites, but some approaches to safety assessment are discussed for these. Environ. Mol. Mutagen. 58:296-324, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
33
|
Bolognesi C, Castoldi AF, Crebelli R, Barthélémy E, Maurici D, Wölfle D, Volk K, Castle L. Genotoxicity testing approaches for the safety assessment of substances used in food contact materials prior to their authorization in the European Union. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:361-374. [PMID: 28556235 DOI: 10.1002/em.22094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Food contact materials are all materials and articles intended to come directly or indirectly into contact with food. Before being included in the positive European "Union list" of authorized substances (monomers, other starting substances and additives) for plastic food contact materials, the European Food Safety Authority (EFSA) must assess their safety "in use". If relevant for risk, the safety of the main impurities, reaction and degradation products originating from the manufacturing process is also evaluated. Information on genotoxicity is always required irrespective of the extent of migration and the resulting human exposure, in view of the theoretical lack of threshold for genotoxic events. The 2008 EFSA approach, requiring the testing of food contact materials in three in vitro mutagenicity tests, though still acceptable, is now superseded by the 2011 EFSA Scientific Committee's recommendation for only two complementary tests including a bacterial gene mutation test and an in vitro micronucleus test, to detect two main genetic endpoints (i.e., gene mutations and chromosome aberrations). Follow-up of in vitro positive results depends on the type of genetic effect and on the substance's systemic availability. In this study, we provide an analysis of the data on genotoxicity testing gathered by EFSA on food contact materials for the period 1992-2015. We also illustrate practical examples of the approaches that EFSA took when evaluating "non standard" food contact chemicals (e.g., polymeric additives, oligomer or other reaction mixtures, and nanosubstances). Additionally, EFSA's experience gained from using non testing methods and/or future possibilities in this area are discussed. Environ. Mol. Mutagen. 58:361-374, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Bolognesi
- IRCCS A.O.U. San Martino-IST, Environmental Carcinogenesis Unit, Genova, Italy
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel), Parma, Italy
| | - Anna F Castoldi
- Food Ingredients and Packaging (FIP) Unit, European Food Safety Authority (EFSA), Parma, Italy
| | | | - Eric Barthélémy
- Food Ingredients and Packaging (FIP) Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - Daniela Maurici
- Scientific Committee and Emerging Risks (SCER) Unit, EFSA, Parma, Italy
| | - Detlef Wölfle
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel), Parma, Italy
- Department of Chemical and Product Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Volk
- Food Ingredients and Packaging (FIP) Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - Laurence Castle
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel), Parma, Italy
| |
Collapse
|
34
|
Boobis A, Brown P, Cronin MTD, Edwards J, Galli CL, Goodman J, Jacobs A, Kirkland D, Luijten M, Marsaux C, Martin M, Yang C, Hollnagel HM. Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Crit Rev Toxicol 2017; 47:705-727. [PMID: 28510487 DOI: 10.1080/10408444.2017.1318822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The threshold of toxicological concern (TTC) approach is a resource-effective de minimis method for the safety assessment of chemicals, based on distributional analysis of the results of a large number of toxicological studies. It is being increasingly used to screen and prioritize substances with low exposure for which there is little or no toxicological information. The first step in the approach is the identification of substances that may be DNA-reactive mutagens, to which the lowest TTC value is applied. This TTC value was based on the analysis of the cancer potency database and involved a number of assumptions that no longer reflect the state-of-the-science and some of which were not as transparent as they could have been. Hence, review and updating of the database is proposed, using inclusion and exclusion criteria reflecting current knowledge. A strategy for the selection of appropriate substances for TTC determination, based on consideration of weight of evidence for genotoxicity and carcinogenicity is outlined. Identification of substances that are carcinogenic by a DNA-reactive mutagenic mode of action and those that clearly act by a non-genotoxic mode of action will enable the protectiveness to be determined of both the TTC for DNA-reactive mutagenicity and that applied by default to substances that may be carcinogenic but are unlikely to be DNA-reactive mutagens (i.e. for Cramer class I-III compounds). Critical to the application of the TTC approach to substances that are likely to be DNA-reactive mutagens is the reliability of the software tools used to identify such compounds. Current methods for this task are reviewed and recommendations made for their application.
Collapse
Affiliation(s)
- Alan Boobis
- a Department of Medicine , Imperial College London , London , UK
| | - Paul Brown
- b US Food and Drug Administration , Silver Spring , MD , USA
| | | | - James Edwards
- d DSM Nutritional Products Ltd , Kaiseraugst , Switzerland
| | - Corrado Lodovico Galli
- e Department of Pharmacological and Biomolecular Sciences , University of Milan , Milan , Italy
| | - Jay Goodman
- f Department of Pharmacology and Toxicology , Michigan State University , East Lansing , MI , USA
| | - Abigail Jacobs
- b US Food and Drug Administration , Silver Spring , MD , USA
| | | | - Mirjam Luijten
- h Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | | | - Matthew Martin
- j Environmental Protection Agency , Washington , DC , USA
| | - Chihae Yang
- k Chemical and Biomolecular Engineering , The Ohio State University , Columbus , OH , USA.,l Molecular Networks GmbH , Nürnberg , Germany.,m Altamira LLC , Columbus , OH , USA
| | | |
Collapse
|
35
|
Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR, Langie SAS. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017; 32:397-408. [DOI: 10.1093/mutage/gex002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 1, 31009 Pamplona, Spain,
| | - Bertrand Pourrut
- ISA Lille – LGCgE, University of Lille Nord de France, 48 boulevard Vauban, 59046 Lille, France,
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, Oslo, Norway and
| | - Andrew R. Collins
- Department of Nutrition, University of Oslo, PB 1046 Blindern, Oslo, Norway
| | - Sabine A. S. Langie
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| |
Collapse
|
36
|
Rieswijk L, Brauers KJJ, Coonen MLJ, Jennen DGJ, van Breda SGJ, Kleinjans JCS. Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity. Mutagenesis 2016; 31:603-15. [PMID: 27338304 DOI: 10.1093/mutage/gew027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Collapse
Affiliation(s)
- Linda Rieswijk
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Karen J J Brauers
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Maarten L J Coonen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Simone G J van Breda
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| |
Collapse
|
37
|
Morita T, Hamada S, Masumura K, Wakata A, Maniwa J, Takasawa H, Yasunaga K, Hashizume T, Honma M. Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:1-29. [DOI: 10.1016/j.mrgentox.2016.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
|
38
|
Beken S, Kasper P, van der Laan JW. Regulatory Acceptance of Alternative Methods in the Development and Approval of Pharmaceuticals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:33-64. [DOI: 10.1007/978-3-319-33826-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
|
40
|
Frötschl R. Experiences with the in vivo and in vitro comet assay in regulatory testing. Mutagenesis 2015; 30:51-7. [PMID: 25527728 DOI: 10.1093/mutage/geu069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in vivo comet assay has recently been implemented into regulatory genotoxicity testing of pharmaceuticals with inclusion into the ICH S2R1 guidance. Regulatory genotoxicity testing aims to detect DNA alterations in form of gene mutations, larger scale chromosomal damage and recombination and aneuploidy. The ICH S2R1 guideline offers two options of standard batteries of tests for the detection of these endpoints. Both options start with an AMES assay and option 1 includes an in vitro mammalian cell assay and an in vivo micronucleus assay in rodent, whereas option 2 includes an in vivo micronucleus assay in bone marrow in rodent and a second in vivo assay in a second tissue with a second endpoint. The test recommended as second in vivo test is the comet assay in rat liver. The in vivo comet assay is considered as mature enough to ensure reliable detection of relevant in vivo genotoxicants in combination with the micronucleus test in bone marrow and the AMES assay. Although lots of research papers have been published using the in vitro comet assay, the in vitro version has not been implemented into official regulatory testing guidelines. A survey of the years 1999-2014 revealed 27 in vivo comet assays submitted to BfArM with market authorisation procedures, European and national advice procedures and clinical trial applications. In three procedures, in vitro comet assays had been submitted within the genetic toxicology packages.
Collapse
Affiliation(s)
- Roland Frötschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
41
|
Asare N, Duale N, Slagsvold HH, Lindeman B, Olsen AK, Gromadzka-Ostrowska J, Meczynska-Wielgosz S, Kruszewski M, Brunborg G, Instanes C. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology 2015; 10:312-21. [PMID: 26923343 DOI: 10.3109/17435390.2015.1071443] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, we showed that silver nanoparticles (AgNPs) caused apoptosis, necrosis and DNA strand breaks in different cell models in vitro. These findings warranted analyses of their relevance in vivo. We investigated the genotoxic potential and gene expression profiles of silver particles of nano- (Ag20, 20 nm) and submicron- (Ag200, 200 nm) size and titanium dioxide nanoparticles (TiO2-NPs, 21 nm) in selected tissues from exposed male mice including the gonades. A single dose of 5 mg/kg bw nanoparticles was administered intravenously to male mice derived from C57BL6 (WT) and 8-oxoguanine DNA glycosylase knock-out (Ogg1(-/-) KO). Testis, lung and liver were harvested one and seven days post-exposure and analyzed for DNA strand breaks and oxidized purines employing the Comet assay with Formamidopyrimidine DNA glycosylase (Fpg) treatment, and sperm DNA fragmentation by the sperm chromatin structure assay (SCSA). Based on an initial screening of a panel of 21 genes, seven genes were selected and their expression levels were analyzed in all lung and testis tissues sampled from all animals (n = 6 mice/treatment group) using qPCR. AgNPs, in particular Ag200, caused significantly increased levels of DNA strand breaks and alkali labile sites in lung, seven days post-exposure. Fpg-sensitive lesions were significantly induced in both testis and lung. The transcript level of some key genes; Atm, Rad51, Sod1, Fos and Mmp3, were significantly induced compared to controls, particularly in lung samples from Ag200-exposed KO mice. We conclude that the Ag200 causes genotoxicity and distinct gene expression patterns in selected DNA damage response and repair related genes.
Collapse
Affiliation(s)
- Nana Asare
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Nur Duale
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Hege H Slagsvold
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway .,b Norwegian Directorate for Civil Protection , Tønsberg , Norway
| | - Birgitte Lindeman
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Ann Karin Olsen
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | | | - Sylwia Meczynska-Wielgosz
- d Institute of Nuclear Chemistry and Technology, Center for Radiobiology and Biological Dosimetry , Warsaw , Poland
| | - Marcin Kruszewski
- e Department of Molecular Biology and Translational Research , Institute of Rural Health , Lublin , Poland , and.,f Faculty of Medicine , University of Information Technology and Management in Rzeszów , Rzeszów , Poland
| | - Gunnar Brunborg
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Christine Instanes
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
42
|
Canipa S, Cayley A, Drewe WC, Williams RV, Hamada S, Hirose A, Honma M, Morita T. Usingin vitrostructural alerts for chromosome damage to predictin vivoactivity and direct future testing. Mutagenesis 2015; 31:17-25. [DOI: 10.1093/mutage/gev047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Koyanagi M, Hayashi SM. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food Chem Toxicol 2015; 83:283-92. [PMID: 26142838 DOI: 10.1016/j.fct.2015.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Myricitrin, a flavonoid extracted from the fruit, leaves, and bark of Chinese bayberry (Myrica rubra SIEBOLD), is currently used as a flavor modifier in snack foods, dairy products, and beverages in Japan. Myricitrin is converted to myricetin by intestinal microflora; myricetin also occurs ubiquitously in plants and is consumed in fruits, vegetables, and beverages. The genotoxic potential of myricitrin and myricetin was evaluated in anticipation of worldwide marketing of food products containing myricitrin. In a bacterial reverse mutation assay, myricetin tested positive for frameshift mutations under metabolic activation conditions whereas myricitrin tested negative for mutagenic potential. Both myricitrin and myricetin induced micronuclei formation in human TK6 lymphoblastoid cells under conditions lacking metabolic activation; however, the negative response observed in the presence of metabolic activation suggests that rat liver S9 homogenate may detoxify reactive metabolites of these chemicals in mammalian cells. In 3-day combined micronucleus/Comet assays using male and female B6C3F1 mice, no induction of micronuclei was observed in peripheral blood, or conclusive evidence of damage detected in the liver, glandular stomach, or duodenum following exposure to myricitrin or myricetin. Our studies did not reveal evidence of genotoxic potential of myricitrin in vivo, supporting its safe use in food and beverages.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
44
|
Morita T, Uno Y, Honma M, Kojima H, Hayashi M, Tice RR, Corvi R, Schechtman L. The JaCVAM international validation study on the in vivo comet assay: Selection of test chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Pant K, Krsmanovic L, Bruce SW, Kelley T, Arevalo M, Atta-Safoh S, Debelie F, La Force MLK, Springer S, Sly J, Paranjpe M, Lawlor T, Aardema M. Combination comet/micronucleus assay validation performed by BioReliance under the JaCVAM initiative. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:6-12. [DOI: 10.1016/j.mrgentox.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
|
47
|
Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: Summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) – Mammalian Mutagenicity Study Group (MMS). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:2-17. [DOI: 10.1016/j.mrgentox.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
48
|
Guichard Y, Maire MA, Sébillaud S, Fontana C, Langlais C, Micillino JC, Darne C, Roszak J, Stępnik M, Fessard V, Binet S, Gaté L. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 2: intratracheal instillation and intravenous injection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:228-244. [PMID: 25451515 DOI: 10.1002/em.21928] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Synthetic amorphous silica nanomaterials (SAS) are extensively used in food and tire industries. In many industrial processes, SAS may become aerosolized and lead to occupational exposure of workers through inhalation in particular. However, little is known about the in vivo genotoxicity of these particulate materials. To gain insight into the toxicological properties of four SAS (NM-200, NM-201, NM-202, and NM-203), rats are treated with three consecutive intratracheal instillations of 3, 6, or 12 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection (cumulative doses of 9, 18, and 36 mg/kg). Deoxyribonucleic acid (DNA) damage was assessed using erythrocyte micronucleus test and the standard and Fpg-modified comet assays on cells from bronchoalveolar lavage fluid (BALF), lung, blood, spleen, liver, bone marrow, and kidney. Although all of the SAS caused increased dose-dependent changes in lung inflammation as demonstrated by BALF neutrophilia, they did not induce any significant DNA damage. As the amount of SAS reaching the blood stream and subsequently the internal organs is probably to be low following intratracheal instillation, an additional experiment was performed with NM-203. Rats received three consecutive intravenous injections of 5, 10, or 20 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection. Despite the hepatotoxicity, thrombocytopenia, and even animal death induced by this nanomaterial, no significant increase in DNA damage or micronucleus frequency was observed in SAS-exposed animals. It was concluded that under experimental conditions, SAS induced obvious toxic effects but did cause any genotoxicity following intratracheal instillation and intravenous injection.
Collapse
Affiliation(s)
- Yves Guichard
- INRS, Institut National de Recherche et de Sécurité, Département Toxicologie et Biométrologie, Rue du Morvan, CS 60027, 54519, Vandoeuvre les Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fei C, Zhang J, Lin Y, Wang X, Zhang K, Zhang L, Zheng W, Wang M, Li T, Xiao S, Xue F, Wang C. Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul Toxicol Pharmacol 2015; 71:585-9. [PMID: 25645284 DOI: 10.1016/j.yrtph.2015.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/26/2022]
Abstract
Nitromezuril (NZL) is a novel triazine compound that exhibits remarkable anticoccidial activity. However, mutagenicity and genotoxicity of NZL have not been evaluated to date. This study evaluated the potential risks of NZL by testing for bacterial reverse mutation (Ames), mouse sperm abnormality (SA), bone marrow micronucleus (MN) and chromosomal aberration (CA). Mice were orally administered with NZL at 385, 192 and 96 mg/kg, corresponding to 0.5 ×, 0.25 × and 0.125 × the LD50 of NZL, respectively. No significant increases in SA and CA were found in mice treated with NZL for 5d and 3d, respectively (P>0.05). NZL at 96-385 mg/kg did not have significant influence on micronucleated polychromatic erythrocyte counts (P>0.05). These results suggest that NZL is not genotoxic. However, Ames test results were positive both with and without the S9 system for Salmonella typhimurium TA98 and TA100, suggesting that NZL may be mutagenic. The mutagenic effects of NZL were different in in vitro and in vivo assays. Further studies should be conducted to confirm the safety of using and developing NZL as a novel anticoccidial drug.
Collapse
Affiliation(s)
- Chenzhong Fei
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Jie Zhang
- Chinese Medicine Hospital of Pudong New Area, Shanghai 201200, PR China
| | - Yang Lin
- Institute of Veterinary Feed Control of Zhengzhou, Henan 450003, PR China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Keyu Zhang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lifang Zhang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wenli Zheng
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tao Li
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Sui Xiao
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Feiqun Xue
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Chunmei Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
50
|
Corcuera LA, Vettorazzi A, Arbillaga L, Pérez N, Gil AG, Azqueta A, González-Peñas E, García-Jalón JA, López de Cerain A. Genotoxicity of Aflatoxin B1 and Ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay. Food Chem Toxicol 2014; 76:116-24. [PMID: 25530104 DOI: 10.1016/j.fct.2014.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are genotoxic mycotoxins that can contaminate a variety of foodstuffs, the liver and the kidney being their target organs, respectively. The micronucleus (MN) assay (bone marrow) and the comet assay (liver and kidney) were performed simultaneously in F344 rats, treated with AFB1 (0.25 mg/kg b.w.), OTA (0.5 mg/kg b.w.) or both mycotoxins. After AFB1 treatment, histopathology and biochemistry analysis showed liver necrosis, focal inflammation and an increase in Alanine Aminotransferase and Aspartate Aminotransferase. OTA alone did not cause any alteration. The acute hepatotoxic effects caused by AFB1 were less pronounced in animals treated with both mycotoxins. With regard to the MN assay, after 24 h, positive results were obtained for AFB1 and negative results were obtained for OTA, although both toxins caused bone marrow toxicity. In the combined treatment, OTA reduced the toxicity and the number of MN produced by AFB1. In the comet assay, after 3 h, positive results were obtained for AFB1 in the liver and for OTA in the kidney. The combined treatment reduced DNA damage in the liver and had no influence in the kidney. Altogether, these results may be indicative of an antagonistic relationship regarding the genotoxicity of both mycotoxins.
Collapse
Affiliation(s)
- Laura-Ana Corcuera
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Leire Arbillaga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Noemí Pérez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Ana Gloria Gil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Jose Antonio García-Jalón
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|