1
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Shen JS, Balaji U, Shigeyasu K, Okugawa Y, Jabbarzadeh-Tabrizi S, Day TS, Arning E, Marshall J, Cheng SH, Gu J, Schiffmann R, Bottiglieri T, Goel A. Dysregulated DNA methylation in the pathogenesis of Fabry disease. Mol Genet Metab Rep 2022; 33:100919. [PMID: 36186841 PMCID: PMC9519376 DOI: 10.1016/j.ymgmr.2022.100919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A and subsequent accumulation of glycosphingolipids with terminal α-D-galactosyl residues. The molecular process through which this abnormal metabolism of glycosphingolipids causes multisystem dysfunction in Fabry disease is not fully understood. We sought to determine whether dysregulated DNA methylation plays a role in the development of this disease. In the present study, using isogenic cellular models derived from Fabry patient endothelial cells, we tested whether manipulation of α-galactosidase A activity and glycosphingolipid metabolism affects DNA methylation. Bisulfite pyrosequencing revealed that changes in α-galactosidase A activity were associated with significantly altered DNA methylation in the androgen receptor promoter, and this effect was highly CpG loci-specific. Methylation array studies showed that α-galactosidase A activity and glycosphingolipid levels were associated with differential methylation of numerous CpG sites throughout the genome. We identified 15 signaling pathways that may be susceptible to methylation alterations in Fabry disease. By incorporating RNA sequencing data, we identified 21 genes that have both differential mRNA expression and methylation. Upregulated expression of collagen type IV alpha 1 and alpha 2 genes correlated with decreased methylation of these two genes. Methionine levels were elevated in Fabry patient cells and Fabry mouse tissues, suggesting that a perturbed methionine cycle contributes to the observed dysregulated methylation patterns. In conclusion, this study provides evidence that α-galactosidase A deficiency and glycosphingolipid storage may affect DNA methylation homeostasis and highlights the importance of epigenetics in the pathogenesis of Fabry disease and, possibly, of other lysosomal storage disorders.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
- Corresponding author at: 4D Molecular Therapeutics, 5858 Horton St., Suite 455, Emeryville, CA 94608, United States of America.
| | - Uthra Balaji
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Siamak Jabbarzadeh-Tabrizi
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Taniqua S. Day
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - John Marshall
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Seng H. Cheng
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| |
Collapse
|
3
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
4
|
Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019; 11:nu11030608. [PMID: 30871166 PMCID: PMC6471069 DOI: 10.3390/nu11030608] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that is essential for regulating gene transcription. However, aberrant DNA methylation, which is a nearly universal finding in cancer, can result in disturbed gene expression. DNA methylation is modified by environmental factors such as diet that may modify cancer risk and tumor behavior. Abnormal DNA methylation has been observed in several cancers such as colon, stomach, cervical, prostate, and breast cancers. These alterations in DNA methylation may play a critical role in cancer development and progression. Dietary nutrient intake and bioactive food components are essential environmental factors that may influence DNA methylation either by directly inhibiting enzymes that catalyze DNA methylation or by changing the availability of substrates required for those enzymatic reactions such as the availability and utilization of methyl groups. In this review, we focused on nutrients that act as methyl donors or methylation co-factors and presented intriguing evidence for the role of these bioactive food components in altering DNA methylation patterns in cancer. Such a role is likely to have a mechanistic impact on the process of carcinogenesis and offer possible therapeutic potentials.
Collapse
|
5
|
Mafra D, Esgalhado M, Borges NA, Cardozo LFMF, Stockler-Pinto MB, Craven H, Buchanan SJ, Lindholm B, Stenvinkel P, Shiels PG. Methyl Donor Nutrients in Chronic Kidney Disease: Impact on the Epigenetic Landscape. J Nutr 2019; 149:372-380. [PMID: 30796783 DOI: 10.1093/jn/nxy289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Epigenetic alterations, such as those linked to DNA methylation, may potentially provide molecular explanations for complications associated with altered gene expression in illnesses, such as chronic kidney disease (CKD). Although both DNA hypo- and hypermethylation have been observed in the uremic milieu, this remains only a single aspect of the epigenetic landscape and, thus, of any biochemical dysregulation associated with CKD. Nevertheless, the role of uremia-promoting alterations on the epigenetic landscape regulating gene expression is still a novel and scarcely studied field. Although few studies have actually reported alterations of DNA methylation via methyl donor nutrient intake, emerging evidence indicates that nutritional modification of the microbiome can affect one-carbon metabolism and the capacity to methylate the genome in CKD. In this review, we discuss the nutritional modifications that may affect one-carbon metabolism and the possible impact of methyl donor nutrients on the microbiome, CKD, and its phenotype.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences.,Post Graduation Program in Cardiovascular Sciences
| | | | - Natalia A Borges
- Post Graduation Program in Cardiovascular Sciences.,Post Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | | | - Milena B Stockler-Pinto
- Post Graduation Program in Cardiovascular Sciences.,Post Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ), Brazil
| | - Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Sarah J Buchanan
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
6
|
Wu Y, Sánchez BN, Goodrich JM, Dolinoy DC, Cantoral A, Mercado-Garcia A, Ruiz-Narváez EA, Téllez-Rojo MM, Peterson KE. Dietary exposures, epigenetics and pubertal tempo. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz002. [PMID: 30863553 PMCID: PMC6404688 DOI: 10.1093/eep/dvz002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 05/11/2023]
Abstract
Gene expression changes mediated by DNA methylation may play a role in pubertal tempo regulation, and availability of methyl donor nutrients affects these pathways. We examined first trimester maternal and adolescent diet patterns that may be associated with DNA methylation at long interspersed nucleotide (LINE-1) repetitive elements in adolescence using least absolute shrinkage and selection operator (LASSO) and calculated an 'Epigenetics-Associated Diet Score' (EADS) for each pattern; then tested the associations of these scores with pubertal tempo among adolescent boys and girls. The analytic sample included 118 boys and 132 girls aged 10-18 years. DNA methylation at LINE-1 repetitive elements was quantified. Typical maternal and adolescent nutrient intakes were estimated using food frequency questionnaires. Interval-censored time to event and ordinal regression models were used to examine associations EADS scores with pubertal tempo using physician-assessed Tanner stages and self-reported menarche, respectively, adjusted for confounders. We observed associations between maternal EADS and pubertal onset, but not pubertal progression. Each standard deviation (SD) greater maternal EADS was associated with 52% higher odds of having later onset of menarche in both cross-sectional and prospective analysis (P = 0.031 and 0.028, respectively). In contrast, we observed associations between adolescent EADS and pubertal progression, but not pubertal onset. Among boys, for each SD higher adolescent EADS, there was 13% increase in odds of slower genital progression (P = 0.050), as well as 26 and 27% increase in odds of slower left and right testicular development, respectively (P = 0.001). Epigenetic-associated diet influences pubertal tempo in a sex- and timing-specific manner.
Collapse
Affiliation(s)
- Yue Wu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Adriana Mercado-Garcia
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Yadav MK, Manoli NM, Vimalraj S, Madhunapantula SV. Unmethylated promoter DNA correlates with p53 expression and apoptotic levels only in Vitamin B9 and B12 deficient megaloblastic anemia but not in non-megaloblastic anemia controls. Int J Biol Macromol 2017; 109:76-84. [PMID: 29246873 DOI: 10.1016/j.ijbiomac.2017.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Cyanocobalamin (Vitamin B12, VB12) and Folic acid (Vitamin B9, VB9) deficiency leads to anemia in women. We have recently shown low VB12 and VB9 levels in the serum of megaloblastic anemia (MBA) patients. Further, our study demonstrated elevated homocysteine and p53, respectively, in the serum and bone marrow aspirates of MBA patients but not in non-MBA subjects. However, it is unknown whether any gender specific variation in VB12 and VB9 level exists in MBA and non-MBA patients? In addition, it is unclear whether low VB12 and VB9 has a role in the regulation of p53 expression in MBA patients? And whether elevated p53 is functionally active? If so, does bone marrow aspirates of MBA patients show elevated apoptosis. Hence, we have analyzed VB12 and VB9 levels in MBA patients and compared with non-MBA subjects. Next, methylation status of p53 promoter was determined and correlated with p53 expression. Furthermore, the level of apoptosis in bone marrow aspirate paraffin blocks was estimated using TUNEL staining. In conclusion, low VB12 and VB9 in male and female patients directly correlate with p53 promoter unmethylation status, but, inversely correlate with p53 protein expression and its activity, only in MBA cases but not in non-MBA controls.
Collapse
Affiliation(s)
- Manish K Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India
| | - Nandini M Manoli
- Department of Pathology, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India
| | - Selvaraj Vimalraj
- Vascular Biology Lab, AU-KBC Research Centre, MIT campus, Anna University, Chennai, 600044, Tamil Nadu, India.
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited "A" Grade by NAAC and Ranked 45 by National Institutional Ranking Framework (NIRF)-2016, Ministry of Human Resource Development, Government of India), Mysuru, 570015, Karnataka, India.
| |
Collapse
|
8
|
Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. ACTA ACUST UNITED AC 2017; 4:11-16. [PMID: 30167479 PMCID: PMC6112339 DOI: 10.1016/j.aninu.2017.08.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
Abstract
DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM) in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH), and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG) site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression.
Collapse
Affiliation(s)
- Naifeng Zhang
- Feed Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, 100081 Beijing, China
| |
Collapse
|
9
|
Mattocks DAL, Mentch SJ, Shneyder J, Ables GP, Sun D, Richie JP, Locasale JW, Nichenametla SN. Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp Gerontol 2016; 88:1-8. [PMID: 27940170 DOI: 10.1016/j.exger.2016.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022]
Abstract
Despite well-documented evidence for lifespan extension by methionine restriction (MR), underlying mechanisms remain unknown. As methionine can alter S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the substrate and product of DNA methyltransferase-1 (DNMT1), we hypothesized that MR diet alters DNA methylation. Young (8-week-old) and adult (1-year-old) male C57BL/6J mice were fed diets with different levels of methionine (0.12%-MR, 0.84%-CD) for 12weeks. Functional indicators of DNA methylation, including global methylation (GM), gene-specific methylation (GSM) and LINE-1 methylation; and biochemical factors affecting DNA methylation, SAH, SAM, and DNMT1 were assessed in different tissues. MR altered DNA methylation depending on the age of intervention. While MR had no effect on hepatic GM in young animals, it increased GM by 27% over CD in adults (p<0.01). In comparison with young animals, hepatic GM levels were 17% lower in CD adults (p<0.05), but not different in MR adults. The MR-induced increase in hepatic GM was associated with a 38% decrease in SAH levels in adults (p<0.001), with SAH and GM levels being negatively correlated (r2=0.33, p<0.001). No changes were observed in DNMT protein levels in liver. In adipose tissue, MR caused a 6% decline in GM in adults (p<0.05), a corresponding 2-fold increase in SAH (p<0.05), and a 2-fold decrease in DNMT1 (p<0.01). MR caused both increases and decreases in GSM of liver and adipose. No changes were observed in LINE-1. Together, these findings provide evidence for protective effects of MR diet on hepatic DNA hypomethylation in adults, apparently mediated by SAH. These findings also indicate that altered DNA methylation might be playing a role in benefits conferred by MR diet.
Collapse
Affiliation(s)
- Dwight A L Mattocks
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Samantha J Mentch
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | - Jelena Shneyder
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Dongxiao Sun
- Penn State College of Medicine, Department of Pharmacology, Mass Spectrometry Core Facility, Hershey, PA 17033, USA
| | - John P Richie
- Penn State College of Medicine, Department of Public Health Sciences, Hershey, PA 17033, USA
| | - Jason W Locasale
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | - Sailendra N Nichenametla
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA.
| |
Collapse
|
10
|
Nicken P, Empl MT, Gerhard D, Hausmann J, Steinberg P. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay. Food Chem Toxicol 2016; 95:196-202. [PMID: 27427305 DOI: 10.1016/j.fct.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 11/16/2022]
Abstract
High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development.
Collapse
Affiliation(s)
- Petra Nicken
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michael T Empl
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | - Daniel Gerhard
- School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Julia Hausmann
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
11
|
Kennedy BE, Hundert AS, Goguen D, Weaver ICG, Karten B. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1582-97. [PMID: 27083515 DOI: 10.1016/j.ajpath.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 10/21/2022]
Abstract
The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
12
|
Kamisah Y, Norsidah KZ, Azizi A, Faizah O, Nonan MR, Asmadi AY. Palm tocotrienol-rich fraction inhibits methionine-induced cystathionine β-synthase in rat liver. J Physiol Biochem 2015; 71:659-67. [PMID: 26403767 DOI: 10.1007/s13105-015-0431-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/28/2015] [Indexed: 01/23/2023]
Abstract
Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1%) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine β-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine β-synthase.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Ku-Zaifah Norsidah
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.,Department of Basic Medical Sciences, Kuliyyah of Medicine, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Ayob Azizi
- Division of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Othman Faizah
- Department of Anatomy, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Rizal Nonan
- Department of Pathology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Faculty of Traditional and Complementary Medicine, Cyberjaya University College of Medical Sciences, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
13
|
Cañas CA, Cañas F, Bonilla-Abadía F, Ospina FE, Tobón GJ. Epigenetics changes associated to environmental triggers in autoimmunity. Autoimmunity 2015; 49:1-11. [PMID: 26369426 DOI: 10.3109/08916934.2015.1086996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases (AIDs) are chronic conditions initiated by the loss of immunological tolerance to self-antigens and represent a heterogeneous group of disorders that affect specific target organs or multiple organs in different systems. While the pathogenesis of AID remains unclear, its aetiology is multifunctional and includes a combination of genetic, epigenetic, immunological and environmental factors. In AIDs, several epigenetic mechanisms are defective including DNA demethylation, abnormal chromatin positioning associated with autoantibody production and abnormalities in the expression of RNA interference (RNAi). It is known that environmental factors may interfere with DNA methylation and histone modifications, however, little is known about epigenetic changes derived of regulation of RNAi. An approach to the known environmental factors and the mechanisms that alter the epigenetic regulation in AIDs (with emphasis in systemic lupus erythematosus, the prototype of systemic AID) are showed in this review.
Collapse
Affiliation(s)
- Carlos A Cañas
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Felipe Cañas
- b Department of Internal Medicine, Fundación Valle del Lili, Cali , CES University School of Medicine , Medellín, Cali , Colombia
| | - Fabio Bonilla-Abadía
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Fabio E Ospina
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| | - Gabriel J Tobón
- a Department of Internal Medicine, Division of Rheumatology , Fundación Valle del Lili , Cali , Colombia and
| |
Collapse
|
14
|
Shu K, Kuang N, Zhang Z, Hu Z, Zhang Y, Fu Y, Min W. Therapeutic effect of daphnetin on the autoimmune arthritis through demethylation of proapoptotic genes in synovial cells. J Transl Med 2014; 12:287. [PMID: 25311560 PMCID: PMC4207889 DOI: 10.1186/s12967-014-0287-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/01/2014] [Indexed: 03/06/2023] Open
Abstract
Background We have previously reported that dephnetin is therapeutically effective in the treatment of rheumatoid arthritis (RA) in collagen-induced arthritis (CIA) rat model. However, the molecular mechanism and the effect of daphnetin on demethylating proapoptotic genes in the synovial cells remains further clarified. This study may provide a deeper insight into the medicinal application of daphnetin as a treatment for RA. Methods (1) The proliferation inhibition of CIA rat synovial cells was determined by an MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenyterazoliumromide) assay; (2) Methylation specific PCR (MSP) was used to measure the methylation of the proapoptotic genes DR3 (death receptor 3), PDCD5 (programmed cell death 5), FasL and p53; (3) Real time-PCR was performed to determine the mRNA expression of DR3, PDCD5, FasL, p53 and DNA methyltransferases (DNMTs) DNMT1, DNMT3a and DNMT3b; (4) Flow cytometry was applied to detect the protein expression of the DR3, PDCD5, FasL and p53; (5) The apoptotic rate of synovial cells was assessed by flow cytometry with Annexin V and propidium iodide (PI); (6) Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the changes of CIA rat synovial cell structure. Results (1) In the range of 1.25 μg/mL to 40 μg/mL, daphnetin and 5-aza-dc had a dose-dependent and time-dependent degree of inhibition to the CIA rat synovial cells. (2) Daphnetin and 5-aza-dc had a demethylating role on the proapoptotic genes DR3, PDCD5, FasL and p53 of CIA rat synovial cells. (3) Daphnetin and 5-aza-dc decreased the gene expression of methyltransferases DNMT1, DNMT3a and DNMT3b, and increased expression of proapoptotic genes DR3, PDCD5, FasL and p53, which translated into an increased protein expression of DR3, PDCD5, FasL and p53. (4) Daphnetin and 5-aza-dc changed the structure of CIA rat synovial cells to show apoptotic changes and increased the rate of apoptosis. Conclusions Daphnetin can reduce the expression of DNMT1, DNMT3a and DNMT3b, which could result in the proapoptotic genes DR3, PDCD5, FasL and p53 being demethylated. Therefore, daphnetin can increase proapoptotic gene and protein expression resulting in structural apoptotic changes and an increase in early and late CIA rat synovial cell apoptosis.
Collapse
Affiliation(s)
- Kuanyong Shu
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China. .,Department of Gynecological Oncology, Jiangxi Maternity and Child Healthcare Hospital, Nanchang, China.
| | - Nanzhen Kuang
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Zhiqin Zhang
- Reproductive Center, Jiangxi Maternal and Child Health Care Hospital, Nanchang, China.
| | - Ziling Hu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, China.
| | - Yujuan Zhang
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Yingyuan Fu
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| | - Weiping Min
- Department of Immunology, Medical College of Nanchang University; Institute of Immunology and Immunotherapy, Nanchang University and Jiangxi Academy of Medical Sciences, Nanchang, China.
| |
Collapse
|
15
|
Aissa AF, Gomes TDUH, Almeida MR, Hernandes LC, Darin JDC, Bianchi MLP, Antunes LMG. Methionine concentration in the diet has a tissue-specific effect on chromosomal stability in female mice. Food Chem Toxicol 2013; 62:456-62. [PMID: 24036140 DOI: 10.1016/j.fct.2013.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/31/2013] [Accepted: 09/04/2013] [Indexed: 01/27/2023]
Abstract
Inadequate nutrient intake can influence the genome. Since methionine is an essential amino acid that may influence DNA integrity due to its role in the one-carbon metabolism pathway, we were interested in whether methionine imbalance can lead to genotoxic events. Adult female Swiss mice were fed a control (0.3% dl-methionine), methionine-supplemented (2.0% DL-methionine) or methionine-deficient (0% DL-methionine) diet over a 10-week period. Chromosomal damage was assessed in peripheral blood using a micronucleus test, and DNA damage was assessed in the liver, heart and peripheral blood tissues using a comet assay. The mRNA expression of the mismatch repair genes Mlh1 and Msh2 was analyzed in the liver. The frequency of micronucleus in peripheral blood was increased by 122% in the methionine-supplemented group (p<0.05). The methionine-supplemented diet did not induce DNA damage in the heart and liver tissues, but it increased DNA damage in the peripheral blood. The methionine-deficient diet reduced basal DNA damage in liver tissue. This reduction was correlated with decreased mRNA expression of Msh2. Our results demonstrate that methionine has a tissue-specific effect because methionine-supplemented diet induced both chromosomal and DNA damage in peripheral blood while the methionine-deficient diet reduced basal DNA damage in the liver.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012; 23:853-9. [PMID: 22749138 DOI: 10.1016/j.jnutbio.2012.03.003] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 01/17/2023]
Abstract
DNA methylation is the most extensively studied mechanism of epigenetic gene regulation. Increasing evidence indicates that DNA methylation is labile in response to nutritional and environmental influences. Alterations in DNA methylation profiles can lead to changes in gene expression, resulting in diverse phenotypes with the potential for increased disease risk. The primary methyl donor for DNA methylation is S-adenosylmethionine (SAM), a species generated in the cyclical cellular process called one-carbon metabolism. One-carbon metabolism is catalyzed by several enzymes in the presence of dietary micronutrients, including folate, choline, betaine and other B vitamins. For this reason, nutrition status, particularly micronutrient intake, has been a focal point when investigating epigenetic mechanisms. Although animal evidence linking nutrition and DNA methylation is fairly extensive, epidemiological evidence is less comprehensive. This review serves to integrate studies of the animal in vivo with human epidemiological data pertaining to nutritional regulation of DNA methylation and to further identify areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Olivia S Anderson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | | | | |
Collapse
|