1
|
Vinnikov VA. Effect of changing the radiation dose range on the in vitro cytogenetic dose response to gamma-rays. Int J Radiat Biol 2024; 100:875-889. [PMID: 38647504 DOI: 10.1080/09553002.2024.2338511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Kosarnia M, Bahreyni-Toossi MT, Gholamhosseinian H, Dolat E, Fakour-Mollaee P, Azimian H. Establishment and validation of a calibration curve for dicentric chromosome induced by 6MV X-ray. RADIATION PROTECTION DOSIMETRY 2023; 199:1410-1415. [PMID: 37448196 DOI: 10.1093/rpd/ncad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Radiation during radiotherapy and nuclear accidents is currently one of the biggest concerns for the international community. Biological dosimetry examines the amount of damage caused by radiation at the cellular level by quantifying a radiation biomarker. In particular, the dicentric chromosome assay is a biodosimetric technique that can quantify radiation damage by correlating radiation dose exposure with the frequency of dicentric chromosomes in the peripheral lymphocytes extracted from exposed individuals. This study aims to present of the reference dose-response calibration curve for biodosimetry laboratory of Mashhad University of Medical Sciences (north-east of Iran). In all, 40 samples of peripheral blood from four healthy volunteers were irradiated at doses of 0-5 Gray in a customised water phantom using a 6 MV X-rays at dose rate of 2 Gy/min from a linear accelerator. The irradiated samples were cultured and analysed according to the International Atomic Energy Agency Cytogenetic Dosimetry Protocol (2011) with some modifications. Linear-quadratic model curve fitting and further statistical analysis were done using Chromosome Aberration Calculation Software Version 2.0 and Dose Estimate (Version 5.2). The curve equation obtained was ${Y}_{dic}=0.0533{D}^2+0.0231D+0.0001$ and was in the range of other studies. Validation of the calibration curve was done by estimating the dose of blind samples.
Collapse
Affiliation(s)
- Morteza Kosarnia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | | | - Hamid Gholamhosseinian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Parisa Fakour-Mollaee
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| |
Collapse
|
3
|
Jeong SK, Oh SJ, Kang YR, Kim H, Kye YU, Lee SH, Lee CG, Park MT, Baek JH, Kim JS, Jeong MH, Jo WS. Biological dosimetry dose-response curves for residents living near nuclear power plants in South Korea. Sci Prog 2023; 106:368504231198935. [PMID: 37769294 PMCID: PMC10540589 DOI: 10.1177/00368504231198935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and β-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.
Collapse
Affiliation(s)
- Soo Kyung Jeong
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - HyoJin Kim
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yong Uk Kye
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Seong Hun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Moon-Taek Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| |
Collapse
|
4
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
5
|
Use of biological dosimetry to confirm radiation exposure: Case study. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mendes ME, Mendonça JCGD, Hwang S, Giorgio MD, Lima FFD, Santos N. Calibration curves by 60Co with low dose rate are different in terms of dose estimation - a comparative study. Genet Mol Biol 2020; 43:e20180370. [PMID: 32105287 PMCID: PMC7231543 DOI: 10.1590/1678-4685-gmb-2018-0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Biological dosimetry aims to estimate individual absorbed doses due ionizing
radiation exposure. The dicentric chromosomes are considered the most specific
biomarker for dose estimation. This study aimed to compare calibration curves
for linear low energy transfer (LET) radiation built from low dose rates and
whether they vary in terms of dose estimation. For that we did a search in the
literature of all calibration curves produced with low dose rates and we
simulated the dose estimation from pre-established dicentric’s frequencies. The
information on methodologies and cytogenetic results of each study were
analyzed. As expected dose rate influence β coefficients, especially at higher
doses. However, we have seen that some doses were not statistically different
but they should be, because there is a significant association between the
productions of dicentrics and dose rate. This comparative study reinforced the
robustness of the dicentric assay and its importance in biological dosimetry. We
also emphasized that the dose rate was an important factor in dose estimations.
Thus, intercomparison exercises should take into account the dose rates of the
participating laboratories, because the dose rates might explain why some
results of estimated doses fall outside the recommendations.
Collapse
Affiliation(s)
- Mariana Esposito Mendes
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil.,Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | - Suy Hwang
- Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, Brazil
| | | | | | - Neide Santos
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Lusiyanti Y, Syaifudin M, Budiantari T, Purnami S, Ramadhani D. Development of Dose-Response Calibration Curve for Dicentric Chromosome Induced by X-Rays. Genome Integr 2019; 10:2. [PMID: 31391915 PMCID: PMC6659407 DOI: 10.4103/genint.genint_1_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chromosome aberration is a biomarker that has been used as a standard tool in biological dosimetry (biodosimetry) of individuals after exposure to ionizing radiation. It is based mainly on the induction of dicentric chromosomes - one of the radiation-induced biological effects, in order to correlate them with radiation dose. In this study, a dose calibration curve for X-rays was generated by using the dicentric assay and by fitting the data to both Chromosomal Aberration Calculation Software and Dose Estimate programs to compare the output of each method. Peripheral blood samples from four nonsmoker healthy donors were irradiated with various doses ranging from 0 to 4 Gy with 250 kV or 122 keV X-rays at a dose rate of 0.17 Gy/min. The irradiated blood was cultured, harvested, and analyzed according to the standard procedure as described by the International Atomic Energy Agency with slight modifications. The dose-response calibration data for dicentrics were fitted with the linear-quadratic model (Ydic = 0.03987D2 + 0.00651D). The dose-response calibration curve obtained in this research was comparable to other estimations with similar radiation quality and dose rates. The results in this research convinced us in sustaining a biodosimetry using a dose-response calibration curve in our laboratory.
Collapse
Affiliation(s)
- Yanti Lusiyanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Mukh Syaifudin
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Tuti Budiantari
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Sofiati Purnami
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Dwi Ramadhani
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Construction of dose response curves up to 6 Gy for Micronucleus and Dicentric Chromosome Aberration Assay with 6 MV X-ray Beam. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, Ein Oon C, Abdul Majid AMS. 50% Ethanol extract of Orthosiphon stamineus modulates genotoxicity and clastogenicity induced by mitomycin C. Drug Chem Toxicol 2017. [PMID: 28635332 DOI: 10.1080/01480545.2017.1317785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
Collapse
Affiliation(s)
- Dhamraa Waleed Al-Dualimi
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Aman Shah Abdul Majid
- b Department of Pharmacology, School of Medical Sciences , Quest International University , Perak , Malaysia
| | - Sarah Furqan Faisal Al-Shimary
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Amal Aziz Al-Saadi
- c Department of Clinical Analysis , College of Health and Medical Technology , Baghdad , Iraq
| | - Raghdaa Al Zarzour
- d Department of Pharmacology, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Muhammad Asif
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia
| | - Chern Ein Oon
- e Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Penang , Malaysia
| | - Amin Malik Shah Abdul Majid
- a Department of Pharmacology, Eman Laboratory, School of Pharmaceutical Sciences , Universiti Sains Malaysia , Penang , Malaysia.,f ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research , Australian National University , Acton , Australia
| |
Collapse
|
10
|
Lemos-Pinto MMP, Cadena M, Santos N, Fernandes TS, Borges E, Amaral A. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator. ACTA ACUST UNITED AC 2015; 48:908-14. [PMID: 26445334 PMCID: PMC4617117 DOI: 10.1590/1414-431x20154470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.
Collapse
Affiliation(s)
- M M P Lemos-Pinto
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| | - M Cadena
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| | - N Santos
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| | - T S Fernandes
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| | - E Borges
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| | - A Amaral
- Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, PE, BR
| |
Collapse
|
11
|
Perumal V, Sekaran TSG, Raavi V, Basheerudeen SAS, Kanagaraj K, Chowdhury AR, Paul SFD. Radiation signature on exposed cells: Relevance in dose estimation. World J Radiol 2015; 7:266-278. [PMID: 26435777 PMCID: PMC4585950 DOI: 10.4329/wjr.v7.i9.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.
Collapse
|
12
|
Feng L, He L, Wang Y, Du L, Xu C, Liu Q, Fan F. Eight-year follow-up study of three individuals accidentally exposed to (60)Co radiation: Chromosome aberration and micronucleus analysis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 784-785:10-4. [PMID: 26046971 DOI: 10.1016/j.mrgentox.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/26/2022]
Abstract
We assessed dose levels and the persistence of chromosomal aberrations and micronuclei in three individuals in the 8 year following accidental (60)Co radiation exposure. Venous blood samples were collected and used for analyses: traditional chromosome aberration (CA) measurement, G-banding, and the cytokinesis-block micronucleus (CBMN) assay. For CA analysis, we scored dicentric chromosomes (dic) and rings (r) in peripheral blood lymphocytes. The radiation doses (Gy) suffered by the individuals were estimated as: 1.79-2.43 (A), 2.36-2.86 (B), 1.58-1.82 (C), based on CA analysis; and 1.8-2.34 (A), 2.52-2.98 (B), 1.53-1.77 (C), based on CBMN frequencies. G-banding analysis was used to record translocations (t), inversions (inv), and deletions (del). Following the accident, unstable CAs reduced gradually, but stable aberrations persisted. Unstable CAs and CBMN may be valuable biomarkers for dose estimation shortly after high-dose radiation accidents, while stable aberrations may be more useful for assessing long-term effects.
Collapse
Affiliation(s)
- Li Feng
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China; Qianfoshan Hospital of Shandong Province, PR China; Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan 250062, PR China.
| | - Ling He
- Center of Disease Control and Prevention, Sichuan Province 610041, PR China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China.
| | - Feiyue Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
13
|
Bakkiam D, Bhavani M, Anantha Kumar AA, Sonwani S, Venkatachalam P, Sivasubramanian K, Venkatraman B. Dicentric assay: inter-laboratory comparison in Indian laboratories for routine and triage applications. Appl Radiat Isot 2015; 99:77-85. [PMID: 25728004 DOI: 10.1016/j.apradiso.2015.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/16/2022]
Abstract
An Inter-Laboratory Comparison (ILC) study on Dicentric Chromosome Assay (DCA) was carried out between two Indian biodosimetry labs. Human peripheral blood samples exposed to 10 different doses of X-rays up to 5Gy were shared between the labs to generate calibration data. Validation of calibration curves was done by dose estimation of coded samples exposed to X- or gamma radiation. Reliability of the DCA data for triage application was evaluated by scoring 20, 50 and 100 metaphases in the dose range of 0.5-3.0Gy. No significant difference was observed between labs regarding the established calibration data as well as the DCA triage dose assessments. Scoring of 20 metaphases (MP) was adequate to detect radiation exposure of >2Gy whereas 50 MP were sufficient to determine exposures of 0.5Gy. Both labs performed the DCA in a reliable manner and made the first step in setting up a biodosimetry network in India.
Collapse
Affiliation(s)
- D Bakkiam
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - M Bhavani
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - A Arul Anantha Kumar
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India.
| | - Swetha Sonwani
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - P Venkatachalam
- Sri Ramachandra University, Porur, Chennai 600116, Tamilnadu, India
| | - K Sivasubramanian
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| | - B Venkatraman
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
14
|
Establishing cytogenetic biodosimetry laboratory in Saudi Arabia and producing preliminary calibration curve of dicentric chromosomes as biomarker for medical dose estimation in response to radiation emergencies. 3 Biotech 2014; 4:635-645. [PMID: 28324310 PMCID: PMC4235882 DOI: 10.1007/s13205-014-0217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022] Open
Abstract
In cases of public or occupational radiation overexposure and eventual radiological accidents, it is important to provide dose assessment, medical triage, diagnoses and treatment to victims. Cytogenetic bio-dosimetry based on scoring of dicentric chromosomal aberrations assay (DCA) is the “gold standard” biotechnology technique for estimating medically relevant radiation doses. Under the auspices of the National Science, Technology and Innovation Plan in Saudi Arabia, we have set up a biodosimetry laboratory and produced a national standard dose–response calibration curve for DCA, pre-required to estimate the doses received. For this, the basic cytogenetic DCA technique needed to be established. Peripheral blood lymphocytes were collected from four healthy volunteers and irradiated with radiation doses between 0 and 5 Gy of 320 keV X-rays. Then, lymphocytes were PHA stimulated, Colcemid division arrested and stained cytogenetic slides were prepared. The Metafer4 system (MetaSystem) was used for automatic and manually assisted metaphase finding and scoring of dicentric chromosomes. Results were fit to the linear-quadratic dose–effect model according to the IAEA EPR-Biodosimetry-2011 report. The resulting manually assisted dose–response calibration curve (Y = 0.0017 + 0.026 × D + 0.081 × D2) was in the range of those described in other populations. Although the automated scoring over-and-under estimates DCA at low (<1 Gy) and high (>2 Gy) doses, respectively, it showed potential for use in triage mode to segregate between victims with potential risk to develop acute radiotoxicity syndromes. In conclusion, we have successfully established the first biodosimetry laboratory in the region and have produced a preliminary national dose–response calibration curve. The laboratory can now contribute to the national preparedness plan in response to eventual radiation emergencies in addition to providing information for decision makers and public health officials who assess the magnitude of public, medical, occupational and accidental radiation exposures.
Collapse
|
15
|
Pajic J, Rakic B, Jovicic D, Milovanovic A. Construction of dose response calibration curves for dicentrics and micronuclei for X radiation in a Serbian population. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 773:23-8. [DOI: 10.1016/j.mrgentox.2014.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/26/2022]
|
16
|
Bhavani M, Tamizh Selvan G, Kaur H, Adhikari JS, Vijayalakshmi J, Venkatachalam P, Chaudhury NK. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories. Appl Radiat Isot 2014; 92:85-90. [PMID: 25014548 DOI: 10.1016/j.apradiso.2014.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Accepted: 06/04/2014] [Indexed: 11/25/2022]
Abstract
To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to (60)Co γ-radiation for ten different doses (0-5Gy) at a dose rate of 0.7 and 2Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications.
Collapse
Affiliation(s)
- M Bhavani
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - G Tamizh Selvan
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India; Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| | - Harpreet Kaur
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - J S Adhikari
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| | - J Vijayalakshmi
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - P Venkatachalam
- Department of Human Genetics, College of Biomedical Sciences Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | - N K Chaudhury
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, DRDO, Timarpur, New Delhi 110054, India.
| |
Collapse
|
17
|
The cytokinesis-blocked micronucleus assay: Dose estimation and inter-individual differences in the response to γ-radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:17-22. [DOI: 10.1016/j.mrgentox.2013.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/02/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022]
|