1
|
Feitosa IB, Mori B, Santos APDAD, Villanova JCO, Teles CBG, Costa AG. What are the immunopharmacological effects of furazolidone? A systematic review. Immunopharmacol Immunotoxicol 2021; 43:674-679. [PMID: 34570666 DOI: 10.1080/08923973.2021.1979034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Furazolidone (FZD) is a widely used drug in human and veterinary medicine, and has antibacterial and antiprotozoal action. Although it is widely used as a therapy in various pathological conditions, studies on the efficacy of FZD associated with immune responses are still limited. In this review, we seek to describe which immunopharmacological responses are caused by the administration of FZD. The study followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A systematic review of clinical trials and in vitro and in vivo experimental studies was carried out, which resulted in 943 papers, of which 35 were considered eligible and, of these 35, 4 were selected for analysis. The studies listed indicated that administration of FZD can modulate pro- or anti-inflammatory pathways, with a probable increase in the expression of reactive oxygen species and a modulation of apoptotic pathways.
Collapse
Affiliation(s)
- Ivan Brito Feitosa
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Departamento de Medicina, Faculdade Metropolitana de Rondônia, Porto Velho, Brazil
| | - Bruno Mori
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Ana Paula de Azevedo Dos Santos
- Plataforma Técnica de Bioensaio de Malária e Leishmaniose, Fundação Oswaldo Cruz, Fiocruz-Rondônia, Porto Velho, Brazil.,Departamento de Medicina, Centro Universitário São Lucas, Porto Velho, Brazil
| | - Janaína Cecília Oliveira Villanova
- Programa de Pós-Graduação em Ciências Veterinárias, Departamento de Ciências Veterinárias, Universidade Federal do Espírito Santo, Alegre, Brazil.,Laboratório de Produção Farmacêutica, Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Carolina Bioni Garcia Teles
- Plataforma Técnica de Bioensaio de Malária e Leishmaniose, Fundação Oswaldo Cruz, Fiocruz-Rondônia, Porto Velho, Brazil.,Departamento de Medicina, Centro Universitário São Lucas, Porto Velho, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| |
Collapse
|
2
|
Mi Y, Liu Q, Li P, Xu J, Yang Q, Tang J. Targeted gold nanorods combined with low-intensity nsPEFs enhance antimelanoma efficacy in vitro. NANOTECHNOLOGY 2020; 31:355102. [PMID: 32396891 DOI: 10.1088/1361-6528/ab925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-intensity nanosecond pulsed electric fields (nsPEFs) are a novel treatment with promising applications for cell stimulation and tissue ablation, and many research studies have shown that gold nanorods (GNRs) are high-conductivity nanomaterials that can enhance electroporation for biomedical applications. In addition, the folic acid (FA) receptor has been demonstrated as a valuable therapeutic target that is highly expressed in a variety of cancers. To reduce the electric field strength required to treat tumors by nsPEFs, for the first time, gold nanorods with folic acid were proposed to achieve higher antimelanoma efficacy at lower electric field intensity in this study. The surface of polyethylene glycol-gold nanorods with good biocompatibility was further modified by folic acid (FA) to provide modified gold nanorods (GNR-PEG-FA) with specific targeted recognition of A375 melanoma cells. The binding of GNRs to A375 melanoma cells was observed by dark field microscopy. After combined treatment with nsPEFs and GNRs, cell viability was evaluated by a CCK-8 assay. Flow cytometry was performed to evaluate apoptosis and the cell cycle. And active caspase 3 was also detected after treatment. The antimelanoma efficacy was enhanced in a pulsed electric field-dependent manner. More importantly, compared with the group of nsPEFs alone and gold nanorods without FA, treating cells with nsPEFs combined with GNR-PEG-FA resulted in a lower percentage of viable cells, higher percentages of necrosis and apoptosis and higher concentration of active caspase 3 and induced cell cycle arrest in S phase, effectively inhibiting the proliferation of A375 melanoma cells. nsPEFs combined with GNR-PEG-FA showed the best antimelanoma efficacy in vitro and effectively killed melanoma cells with low-intensity nsPEFs. The combined treatment of cells with nsPEFs and GNR-PEG-FA is expected to become a safer and more efficient physical treatment of melanomas.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
BW18, a C-21 steroidal glycoside, exerts an excellent anti-leukemia activity through inducing S phase cell cycle arrest and apoptosis via MAPK pathway in K562 cells. Biomed Pharmacother 2019; 112:108603. [DOI: 10.1016/j.biopha.2019.108603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/10/2023] Open
|
4
|
Qaddoumi MG, Phillips OA, Kombian SB. A novel oxazolidinone derivative PH192 demonstrates anticonvulsant activity in vivo in rats and mice. Eur J Pharm Sci 2019; 130:21-26. [PMID: 30639401 DOI: 10.1016/j.ejps.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
Abstract
The pharmacotherapeutic management of seizure disorders with currently available medications is not optimal due to side effects and failure of some patients to respond to all available medications. As such there is the need to develop new antiseizure drugs by looking at new chemical classes of compounds. We recently screened, in vitro, a new class of compounds, the oxazolidinones, for actions in the brain that may indicate potential for antiseizure activity. A few compounds were identified with such a potential. Here we tested whether one of these lead compounds, PH192, will exhibit in vivo antiseizure activity using chemically- and electrically- induced seizures models in mice and rats. Out of 5 compounds tested, all of them had minimal neurotoxicological effects in mice, with PH192 being the best, with comparable efficacy (ED50) and toxicity (TD50) to only levetiracetam. Intraperitoneal (IP) pretreatment with PH192 produced a dose-dependent protection of mice from seizures induced using the 6 Hz stimulation protocol with an estimated ED50 of 34.5 mg/kg in mice and about 90 mg/kg in rats and a neurotoxic dose >500 mg/kg in mice, yielding a calculated neuro (protective) index of >14.7. When pretreated with 100 mg/kg PH192 for 30 min, about 75% of mice were protected from 6 Hz-induced seizures. When rats were pretreated for 30 min with PH192, 66.6% of rats were protected from seizures induced using the 6 Hz stimulation protocol while 83.3% were protected using the maximal electroshock (MES) stimulation protocol. Pentylenetetrazole (PTZ) injection at 50, and 100 mg/kg produced stage 5 seizures in all rats. Thirty minutes IP pretreatment of rats with 100 mg/kg PH192 protected 80% of rats from the PTZ-induced seizures, a level of protection similar to that obtained with a reference antiepileptic drug (AED) phenytoin (40 mg/kg), that is used clinically for the treatment of various seizure disorders. The results of these studies indicate that PH192 protects against both chemically- and electrically-induced seizures with little central nervous system side effects. This suggests that the oxazolidinone pharmacophore has potential for discovering new antiepileptic drugs with possibly minimal central side effects.
Collapse
Affiliation(s)
- Mohamed G Qaddoumi
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Samuel B Kombian
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| |
Collapse
|
5
|
Xia J, Huang N, Huang H, Sun L, Dong S, Su J, Zhang J, Wang L, Lin L, Shi M, Bin J, Liao Y, Li N, Liao W. Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1. Int J Cancer 2016; 139:2553-69. [PMID: 27529686 DOI: 10.1002/ijc.30381] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Voltage-gated sodium channels (VGSCs), which are aberrantly expressed in several human cancers, affect cancer cell behavior; however, their role in gastric cancer (GC) and the link between these channels and tumorigenic signaling remain unclear. The aims of this study were to determine the clinicopathological significance and role of the VGSC Nav 1.7 in GC progression and to investigate the associated mechanisms. Here, we report that the SCN9A gene encoding Nav 1.7 was the most abundantly expressed VGSC subtype in GC tissue samples and two GC cell lines (BGC-823 and MKN-28 cells). SCN9A expression levels were also frequently found to be elevated in GC samples compared to nonmalignant tissues by real-time PCR. In the 319 GC specimens evaluated by immunohistochemistry, Nav 1.7 expression was correlated with prognosis, and transporter Na(+) /H(+) exchanger-1 (NHE1) and oncoprotein metastasis-associated in colon cancer-1 (MACC1) expression. Nav 1.7 suppression resulted in reduced voltage-gated sodium currents, decreased NHE1 expression, increased extracellular pH and decreased intracellular pH, and ultimately, reduced invasion and proliferation rates of GC cells and growth of GC xenografts in nude mice. Nav 1.7 inhibition led to reduced MACC1 expression, while MACC1 inhibition resulted in reduced NHE1 expression in vitro and in vivo. Mechanistically, the suppression of Nav 1.7 decreased NF-κB p65 nuclear translocation via p38 activation, thus reducing MACC1 expression. Downregulation of MACC1 decreased c-Jun phosphorylation and subsequently reduced NHE1 expression, whereas the addition of hepatocyte growth factor (HGF), a c-Met physiological ligand, reversed the effect. These results indicate that Nav 1.7 promotes GC progression through MACC1-mediated upregulation of NHE1. Therefore, Nav 1.7 is a potential prognostic marker and/or therapeutic target for GC.
Collapse
Affiliation(s)
- Jianling Xia
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongxiang Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoting Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nailin Li
- Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska University Hospital-Solna, Stockholm, 17176, Sweden
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Li H, Miao Q, Xu CW, Huang JH, Zhou YF, Wu MJ. OTX1 Contributes to Hepatocellular Carcinoma Progression by Regulation of ERK/MAPK Pathway. J Korean Med Sci 2016; 31:1215-23. [PMID: 27478331 PMCID: PMC4951550 DOI: 10.3346/jkms.2016.31.8.1215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/12/2016] [Indexed: 11/26/2022] Open
Abstract
Orthodenticlehomeobox 1 (OTX1) overexpression had previously been associated with the progression of several tumors. The present study aimed to determine the expression and role of OTX1 in human hepatocellular carcinoma (HCC). The expression level of OTX1 was examined by quantitative real-time PCR (qRT-PCR) in 10 samples of HCC and paired adjacent non-cancerous tissues, and by immunohistochemistry (IHC) analysis in 128 HCC samples and matched controls. The relationship between OTX1 expression and the clinicopathological features werealso analyzed. Furthermore, the effects of OTX1 knockdown on cell proliferation and migration were determined in HCC cell lines. Axenograft mouse model was also established to investigate the role of OTX1 in HCC tumor growth. TheqRT-PCR and IHC analyses revealed that OTX1 was significantly elevated in HCC tissues compared with the paired non-cancerous controls. Expression of OTX1 was positively correlated with nodal metastasis status (P = 0.009) and TNM staging (P = 0.001) in HCC tissues. In addition, knockdown of OTX1 by shRNA significantly inhibited the proliferation and migration, and induced cell cycle arrest in S phase in vitro. Tumor growth was markedly inhibited by OTX1 silencing in the xenograft. Moreover, OTX1 silencing was causable for the decreased phosphorylation level of ERK/MAPK signaling. In conclusion, OTX1 contributes to HCC progression possibly by regulation of ERK/MAPK pathway. OTX1 may be a novel target for molecular therapy towards HCC.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qian Miao
- Department of Oncology, Quzhou People's Hospital in Zhejiang Province, Quzhou Zhejiang, China
| | - Chun-wei Xu
- Department of Pathology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jian-hui Huang
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Yue-fen Zhou
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Mei-juan Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Zhejiang, China
| |
Collapse
|
7
|
Yan WJ, Wang Q, Yuan CH, Wang F, Ji Y, Dai F, Jin XL, Zhou B. Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation. Free Radic Biol Med 2016; 97:109-123. [PMID: 27233942 DOI: 10.1016/j.freeradbiomed.2016.05.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 02/05/2023]
Abstract
Piperlongumine (PL), a natural electrophilic alkaloid bearing two α, β-unsaturated imides, is a promising anticancer molecule by targeting the stress response to reactive oxygen species (ROS). Considering that ROS generation depends on electrophilicity of PL, PL-CL was designed as its analog by introducing the α-substituent chlorine on the lactam ring to increase moderately its electrophilicity. In comparison with the parent molecule, this molecule was identified as a stronger ROS (O2(∙-) and H2O2) inducer and cytotoxic agent, and manifested more than 15-fold selectivity toward A549 cells over normal WI-38 cells. Mechanistic study uncovers for the first time that the selenoprotein thioredoxin reductase (TrxR) is one of the targets by which PL-CL promotes the ROS generation. Stronger intracellular TrxR inhibition and higher accumulation of ROS (O2(∙-) and H2O2) are responsible for more effective S-phase arrest and mitochondria-mediated apoptotic induction of A549 cells by PL-CL than PLvia p53-p21-cyclinA/CDK2 and ASK1-JNK/p38 signaling cascade pathways, respectively. This work provides an example of successfully designing PL-directed anticancer agent by an electrophilicity-based prooxidant (ROS-generating agent) strategy and gives added confidence for extending this strategy to other natural products.
Collapse
Affiliation(s)
- Wen-Jing Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Cui-Hong Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fu Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Yuan Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
8
|
Hedaya OM, Mathew PM, Mohamed FH, Phillips OA, Luqmani YA. Antiproliferative activity of a series of 5‑(1H‑1,2,3‑triazolyl) methyl‑ and 5‑acetamidomethyl‑oxazolidinone derivatives. Mol Med Rep 2016; 13:3311-8. [PMID: 26936341 DOI: 10.3892/mmr.2016.4938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
Abstract
In the face of increasing resistance to the existing antibiotics, oxazolidinones (exemplified by linezolid) have been developed as promising antibacterial agents, but may have other useful actions. In the present study, a series of 5‑(1H‑1,2,3‑triazoly) l‑methyl‑, 5‑acetamidomethyl‑morpholino and N‑substituted‑piperazino oxazolidinone derivatives were investigated to determine whether they are active against eukaryotic cells. An MTT assay, validated by cell counting, was used to assess the effect of nine oxazolidinone derivatives (concentrations 100 nM‑10 µM) on the proliferation of MCF7 human breast cancer cells. The three most active compounds were then tested on MDA231 breast cancer cells. Cytotoxicity of the selected derivatives was determined by assessing the extent of apoptosis by flow cytometry. The antimetastatic potential of these compounds was assessed on MDA231 cells using wound healing and agarose invasion assays. The 5‑triazolylmethyl piperazino‑oxazolidinone derivatives containing 4‑N‑(2‑chlorocinnamoyl), 4‑N‑(4‑nitrobenzoyl) and 4‑N‑methylsulfonyl moieties exhibited the most potent cytostatic activity against cancer, inhibiting proliferation by up to 70%, in the same order as their reported antibacterial activity against Staphylococcus aureus, but at higher concentrations. Unexpectedly, several derivatives stimulated proliferation at 100 nM, well below their antibacterial minimum inhibitory concentrations. Certain compounds also retarded the motility and invasion of MDA231 cells. Three of the tested derivatives had no effect on the eukaryotic cell lines, demonstrating their preferential activity against bacteria. Two compounds actually stimulated eukaryotic cell proliferation. The remaining three exhibited potent cytostatic activity against and cancer cells, displaying differences in response at low and high concentrations, which may suggest multiple targets on eukaryotic cells. These latter compounds may be useful as anticancer agents.
Collapse
Affiliation(s)
- Omar M Hedaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Princy M Mathew
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Fatima H Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Yunus A Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
9
|
Li Y, Chen LJ, Jiang F, Yang Y, Wang XX, Zhang Z, Li Z, Li L. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase. ACTA ACUST UNITED AC 2015; 48:502-8. [PMID: 25831202 PMCID: PMC4470308 DOI: 10.1590/1414-431x20143729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
Abstract
Hormesis is an adaptive response to a variety of oxidative stresses that renders
cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an
important antioxidant that has protective effects against DNA damage caused by
reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic
effect remains unknown, as is the molecular mechanism that is involved. We found that
a low concentration (10 μM) of CaA increased human liver L-02 cell viability,
attenuated hydrogen peroxide (H2O2)-mediated decreases in cell
viability, and decreased the extent of H2O2-induced DNA
double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA
treatment reduced ROS levels, which might have played a protective role. CaA also
activated the extracellular signal-regulated kinase (ERK) signal pathway in a
time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific
small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability
and the protective effects against H2O2-mediated DNA damage.
This study adds to the understanding of the antioxidant effects of CaA by identifying
a novel molecular mechanism of enhanced cell viability and protection against DNA
damage.
Collapse
Affiliation(s)
- Y Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - L J Chen
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - F Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Yang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - X X Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Z Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Z Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - L Li
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid. Apoptosis 2014; 19:1113-27. [DOI: 10.1007/s10495-014-0993-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|