1
|
Escobar C, Mazón P, Rivadulla C, Chandrappa S. The role of eprosartan in the management of essential hypertension: literature review and expert opinion. Expert Rev Cardiovasc Ther 2024; 22:575-587. [PMID: 39435482 DOI: 10.1080/14779072.2024.2418298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Eprosartan is an angiotensin receptor blocker (ARB) used for management of essential hypertension. With unique pharmacological characteristics, dual action mechanism, and clinical effectiveness, eprosartan offers additional advantages over other ARBs in specific patient populations. AREAS COVERED A comprehensive review of the literature was performed across publicly available databases, with no time limitations, to ensure the inclusion of all relevant studies. The review focuses on presenting the efficacy and safety profile of eprosartan, alone or in combination with other agents. Additionally, it explores the etiology of hypertension concerning the structure and function of angiotensin II type 1 receptors. Further, the efficacy of eprosartan in special populations and its additional benefits are also discussed. EXPERT OPINION Eprosartan effectively reduces blood pressure (BP), with a 24-hour BP-lowering effect at 600 mg/day. Eprosartan demonstrates similar or better efficacy than other ARBs, such as telmisartan and losartan, particularly in managing coagulation-related abnormalities and peripheral resistance. In combination therapy, eprosartan with hydrochlorothiazide significantly enhances BP reduction. Eprosartan is well-tolerated, with a low incidence of adverse events, making it a reliable choice for long-term hypertension management across various patient populations, such as those with comorbid diabetes and renal disease and older adults.
Collapse
Affiliation(s)
- Carlos Escobar
- Cardiology Department, University Hospital La Paz, Madrid, Spain
| | - Pilar Mazón
- Cardiology Department, University Hospital, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Claudio Rivadulla
- Cardiology Department, 12 de Octubre University Hospital, Madrid, Spain
| | | |
Collapse
|
2
|
Yuzbasioglu D, Mahmoud JH, Mamur S, Unal F. Cytogenetic effects of antidiabetic drug metformin. Drug Chem Toxicol 2020; 45:955-962. [PMID: 33161761 DOI: 10.1080/01480545.2020.1844226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metformin (MET) is the first-choice antidiabetic drug for type 2 diabetes mellitus treatment. In this study, the genotoxic potential of MET was evaluated by using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) assays in human peripheral lymphocytes as well as comet assay in isolated lymphocytes. Human lymphocytes were treated with different concentrations of MET (12.5, 25, 50, 75, 100, and 125 µg/mL) for 24 h and 48 h. A negative and a positive control (Mitomycin-C-MMC, 0.20 μg/mL, for CA, SCE, and MN tests; hydrogen peroxide-H2O2, 100 µM, for comet assay) were also maintained. MET significantly increased the frequency of CAs at 48 h exposure (except 12.5 µg/mL) compared to the negative control. MET increased SCEs/cells in both treatment periods (except 12.5 µg/mL at 24 h). MET only increased the frequency of MN at 125 µg/mL. While MET significantly increased the comet tail length (CTL) at four concentrations (25, 75, 100, and 125 µg/mL), it did not affect comet tail intensity (CTI) (except 125 µg/mL) and comet tail moment (CTM) at all the treatments. All these data showed that MET had a mild genotoxic effect, especially at a long treatment period and higher concentrations in human lymphocytes in vitro. However, further in vitro and especially in vivo studies should be conducted to understand the detailed genotoxic potential of MET.HighlightsMetformin increased the frequency of CAs and SCEs, especially at 48-h exposure time in human lymphocytes.This antidiabetic drug increased the frequency of MN only at the highest concentration tested (125 µg/mL).Metformin significantly increased the comet tail length in all treatments (except 50 µg/mL).The drug did not significantly affect the comet tail intensity (except 125 µg/mL) and comet tail moment in all treatments.
Collapse
Affiliation(s)
- Deniz Yuzbasioglu
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| | - Jalank H Mahmoud
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| | - Sevcan Mamur
- Life Sciences Application and Research Center, Gazi University, Ankara, 06830, Turkey
| | - Fatma Unal
- Department of Biology, Science Faculty, Gazi University, Ankara, 06500, Turkey
| |
Collapse
|
3
|
Erikel E, Yuzbasioglu D, Unal F. In vitro genotoxic and antigenotoxic effects of cynarin. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:171-181. [PMID: 30890359 DOI: 10.1016/j.jep.2019.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cynarin is an artichoke phytochemical that possesses a variety of pharmacological features including free-radical scavenging and antioxidant activity. The origin of artichoke species appears to be Mediterranean region. Two of these species, globe artichoke (Cynara cardunculus var. scolymus L.) and cardoon (Cynara cardunculus var. altilis DC), are widely cultivated and consumed. This vegetable, as the basis of the mediterranean diet, has been used as herbal medicine for its therapeutic effects since ancient times. Therefore, this study was performed to determine genotoxic and antigenotoxic effects of cynarin against MMC (mitomycin C) and H2O2 (hydrogen peroxide) induced genomic instability using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronucleus (MN), and comet assays in human lymphocytes. MATERIALS AND METHODS Lymphocytes obtained from two healthy volunteers (1 male and 1 female) were exposed to different concentrations of cynarin (12-194 μM) alone and the combination of cynarin and MMC (0.60 μM) or cynarin and H2O2 (100 μM, only for comet assay). RESULTS Cynarin alone did not induce significant genotoxic effect in the CA, SCE (except 194 μM), MN, and comet assays. The combination of some concentrations of cynarin and MMC decreased the frequency of CAs, SCEs and MN induced by MMC. Furthermore, the combination of cynarin and H2O2 reduced all comet parameters at all the concentrations compared to H2O2 alone. While the highest concentrations of cynarin significantly decreased mitotic index (MI), the combination of cynarin and MMC increased the reduction of MI induced by MMC alone. CONCLUSION All the results obtained in this study demonstrated that cynarin exhibited antigenotoxic effects rather than genotoxic effects. It is believed that cynarin can act as a potential chemo-preventive against genotoxic agents.
Collapse
Affiliation(s)
- Esra Erikel
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| |
Collapse
|
4
|
Timocin T, Arslan M, Basri Ila H. Evaluation of in vitro and in vivo genotoxic and antigenotoxic effects of Rhus coriaria. Drug Chem Toxicol 2019; 44:409-417. [PMID: 30945575 DOI: 10.1080/01480545.2019.1593433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhus coriaria has been important in the treatment of many diseases in traditional use. In this content, the genotoxic, antigenotoxic, and oxidative stress effects of methanol extract of R. coriaria (RCE) were investigated in this study. Two hundred fifty, 500, or 750 µg/mL concentrations of RCE were not found to have DNA damaging effect on pET22-b(+) plasmid and were unable to induce micronuclei in human lymphocytes (24 or 48 h treatment period). However, it did not inhibit the genotoxic effect of mitomycin-c (0.25 µg/mL). Cytotoxic effects of RCE were investigated using mitotic index (MI) and nuclear division index (NDI). Five hundred, 1000, and 2000 mg/kg concentrations of RCE did not induce chromosome aberrations in rat bone marrow cells for 12 or 24 h treatment period. In addition, 2000 mg/kg concentration of RCE showed an antigenotoxic effect by decreasing to genotoxic effect of 400 mg/kg urethane at 12 and 24 h treatment periods. RCE showed cytotoxic effects by significantly decreasing NDI. Moreover, RCE increased cytotoxic effect of Mitomycin C (MMC). However, RCE did not induce cytotoxicity in rat bone marrow cells. The highest concentration of RCE reduced total oxidant level in 12 h treatment. Interestingly, the lowest total oxidant level was found in rats blood treated with the lowest concentration RCE and urethane together. Thousand and 2000 mg/kg concentrations of RCE decreased total antioxidant levels of rat blood at 24 h treatment period. Our results showed that RCE possess cytotoxic effect in short-term treatments in vitro. However, it does not demonstrate genotoxic or cytotoxic effects in vivo.
Collapse
Affiliation(s)
- Taygun Timocin
- Faculty of Science and Letters, Department of Biology, Cukurova University, Adana, Turkey
| | - Mehmet Arslan
- Department of Nursing, School of Health Sciences, Ardahan University, Ardahan, Turkey
| | - Hasan Basri Ila
- Faculty of Science and Letters, Department of Biology, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei H, Eghbal MA. Novel angiotensin receptor blocker, azilsartan induces oxidative stress and NFkB-mediated apoptosis in hepatocellular carcinoma cell line HepG2. Biomed Pharmacother 2018; 99:939-946. [PMID: 29710494 DOI: 10.1016/j.biopha.2018.01.117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Overexpression of renin angiotensin system (RAS) components and nuclear factor-kappa B (NF-kB) has a key role in various cancers. Blockade of RAS and NF-kB pathway has been suggested to reduce cancer cell proliferation. This study aimed to investigate the role of angiotensin II and NF-kB pathway in liver hepatocellular carcinoma cell line (HepG2) proliferation by using azilsartan (as a novel Ag II antagonist) and Bay 11-7082 (as NF-kB inhibitor). HepG2 cells were treated with different concentrations of azilsartan and Bay 11-7082. Cytotoxicity was determined after 24, 48, and 72?h by MTT assay. Reactive oxygen spices (ROS) generation and cytochrome c release were measured following azilsartan and Bay11- 7082 treatment. Apoptosis was analyzed qualitatively by DAPI staining and quantitatively through flow cytometry methodologies and Bax and Bcl-2 mRNA and protein levels were assessed by real time PCR and ELISA methods, respectively. The cytotoxic effects of different concentration of azilsartan and Bay11- 7082 on HepG2 cells were observed as a reduction in cell viability, increased ROS formation, cytochrome c release and apoptosis induction. These effects were found to correlate with a shift in Bax level and a downward trend in the expression of Bcl-2. These findings suggest that azilsartan and Bay11- 7082 in combination or alone have strong potential as an agent for prevention or treatment of liver cancer after further studies.
Collapse
Affiliation(s)
- Elham Ahmadian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Ahmad Yari Khosroushahi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran; Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran; Toxicology Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaclogy and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ali Eghbal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaclogy and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Sohail MF, Sarwar HS, Javed I, Nadhman A, Hussain SZ, Saeed H, Raza A, Irfan Bukhari N, Hussain I, Shahnaz G. Cell to rodent: toxicological profiling of folate grafted thiomer enveloped nanoliposomes. Toxicol Res (Camb) 2017; 6:814-821. [PMID: 30090544 PMCID: PMC6061422 DOI: 10.1039/c7tx00146k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
Polymeric nanomaterials, hybridized with lipid components, e.g. phosphocholine or fatty acids, are currently being explored for efficient nano-platforms for hydrophobic drugs. However, their toxicology and toxicokinetics need to be established before enabling their clinical potential. The aim of this study was to investigate the toxicological profile of thiomer enveloped hybrid nanoliposomes (ENLs) and bare nanoliposomes (NLs), loaded with docetaxel (DTX) hydrophobic drug, biocompatible nano-carriers for therapeutic cargo. The in vitro toxicity of hybrid ENLs and NLs was evaluated towards the HCT-116 colon cancer cell line. Biocompatibility was explored against macrophages and acute oral toxicity was examined in mice for 14 days. The anticancer IC50 for ENLs was 0.148 μg ml-1 compared with 2.38 μg ml-1 for pure docetaxel (DTX). The human macrophage viability remained above 65% and demonstrated a high level of biocompatibility and safety of ENLs. In vivo acute oral toxicity showed slight changes in serum biochemistry and haematology but no significant toxicities were observed referring to the safety of DTX loaded hybrid ENLs. On histological examination, no lesions were determined on the liver, heart and kidney. These studies showed that hybrid ENLs can serve as a safe and biocompatible platform for oral delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Farhan Sohail
- Department of Pharmacy , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , 45320 , Pakistan . ; Tel: +923068672851
- Riphah Institute of Pharmaceutical Sciences , Riphah International University , Lahore Campus , Lahore , Pakistan
- Department of Chemistry , SBA School of Science and Engineering (SBASSE) , Lahore University of Management Sciences (LUMS) , Lahore , 54792 , Pakistan .
- Harvard-MiT Division of Health Sciences Technology , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , 45320 , Pakistan . ; Tel: +923068672851
| | - Ibrahim Javed
- Department of Chemistry , SBA School of Science and Engineering (SBASSE) , Lahore University of Management Sciences (LUMS) , Lahore , 54792 , Pakistan .
| | - Akhtar Nadhman
- Institute of Integrative Biosciences , CECOS University , Phase VI , Hayatabad , Peshawar , Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry , SBA School of Science and Engineering (SBASSE) , Lahore University of Management Sciences (LUMS) , Lahore , 54792 , Pakistan .
| | - Hamid Saeed
- Punjab University College of Pharmacy , Allama Iqbal Campus , University of the Punjab , 54000 , Lahore , Pakistan
| | - Abida Raza
- National Institute of Laser and Optronics , (NILOP) , Islamabad , Pakistan
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy , Allama Iqbal Campus , University of the Punjab , 54000 , Lahore , Pakistan
| | - Irshad Hussain
- Department of Chemistry , SBA School of Science and Engineering (SBASSE) , Lahore University of Management Sciences (LUMS) , Lahore , 54792 , Pakistan .
| | - Gul Shahnaz
- Department of Pharmacy , Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , 45320 , Pakistan . ; Tel: +923068672851
| |
Collapse
|
7
|
Bakhtiari E, Hosseini A, Mousavi SH. The role of ROS and NF-κB pathway in olmesartan induced-toxicity in HeLa and mcf-7 cell lines. Biomed Pharmacother 2017; 93:429-434. [PMID: 28666209 DOI: 10.1016/j.biopha.2017.06.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/28/2017] [Accepted: 06/20/2017] [Indexed: 01/27/2023] Open
Abstract
We have recently shown that olmesartan could induce toxicity in HeLa and MCF-7 cell lines. In this study we investigated toxicity mechanism of olmesartan in HeLa and MCF-7 cell lines. HeLa and MCF-7 cells were cultured in DMEM in optimum conditions. Cells were pretreated with rutin as an antioxidant and treated with olmesartan as a cytotoxic agent. Cell proliferation was determined by MTT assay. The role of ROS was determined using DCFH-DA by flow cytometry analysis. Also, cells were treated with olmesartan (5mM) and Bay 11-7-82 (25μM) for 24h, then expression of apoptotic proteins including Bax, caspase3 and IκB were investigated in both cell lines by western blotting. Cell viability decreased with olmesartan in malignant cell lines. Kinetic of ROS assay showed increment of ROS generation starting at 2h which peaked at 4h after treatment. Pretreatment with antioxidant rutin decreased ROS increment which was consistent with improved viability of olmesartan-treated cells. Apoptosis results showed that olmesartan and Bay 11-7082 increased expression of apoptotic proteins such as Bax, caspase3 and IκB. Results proposed ROS increment and apoptosis could be involving mechanisms in olmesartan-induced toxicity in HeLa and MCF-7 cell lines.
Collapse
Affiliation(s)
- Elham Bakhtiari
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Unal F, Ataseven N, Celebi Keskin A, Yuzbasioglu D. Answer to letter sent by Dr. M.D. Rogers (Chairman of the International Glutamate Technical Committee (IGTC), Belgium) related to Ataseven et al. article published in Food and Chemical Toxicology 2016; 91:8–18. Food Chem Toxicol 2016; 94:262-7. [DOI: 10.1016/j.fct.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/29/2022]
|
9
|
Ataseven N, Yüzbaşıoğlu D, Keskin AÇ, Ünal F. Genotoxicity of monosodium glutamate. Food Chem Toxicol 2016; 91:8-18. [DOI: 10.1016/j.fct.2016.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|