1
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
2
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
3
|
Białas N, Sokolova V, van der Meer SB, Knuschke T, Ruks T, Klein K, Westendorf AM, Epple M. Bacteria (
E. coli
) take up ultrasmall gold nanoparticles (2 nm) as shown by different optical microscopic techniques (CLSM, SIM, STORM). NANO SELECT 2022. [DOI: 10.1002/nano.202200049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nataniel Białas
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Selina Beatrice van der Meer
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Torben Knuschke
- Infection Immunology Institute of Medical Microbiology University Hospital Essen University Duisburg‐Essen Essen Germany
| | - Tatjana Ruks
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Astrid M. Westendorf
- Infection Immunology Institute of Medical Microbiology University Hospital Essen University Duisburg‐Essen Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
4
|
Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients 2022; 14:nu14153049. [PMID: 35893902 PMCID: PMC9330785 DOI: 10.3390/nu14153049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the 21st century, the incidence and prevalence of inflammatory bowel disease (IBD) is rising globally. Despite the pathogenesis of IBD remaining largely unclear, the interactions between environmental exposure, host genetics and immune response contribute to the occurrence and development of this disease. Growing evidence implicates that food additives might be closely related to IBD, but the involved molecular mechanisms are still poorly understood. Food additives may be categorized as distinct types in accordance with their function and property, including artificial sweeteners, preservatives, food colorant, emulsifiers, stabilizers, thickeners and so on. Various kinds of food additives play a role in modifying the interaction between gut microbiota and intestinal inflammation. Therefore, this review comprehensively synthesizes the current evidence on the interplay between different food additives and gut microbiome alterations, and further elucidates the potential mechanisms of food additives–associated microbiota changes involved in IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
5
|
Ma Y, Liu Y, Xu L, Shi Z, Zhou L. Applying Visual-Motor Training Combined with an Eye Relaxation System Based on Far-Infrared Nanomaterials in Pseudomyopia. J Biomed Nanotechnol 2022; 18:87-96. [PMID: 35180902 DOI: 10.1166/jbn.2022.3187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the effect of far-infrared nanomaterial eye relaxation system combined with visual-motor training in pseudomyopia, 120 patients with pseudomyopia were included in the experiment and randomly divided into nanomaterial and control groups. The control group received visual-motor training, and the nanomaterial group was treated with an eye relaxation system. This study found that nanozirconia and nanotitanium dioxide used in eye relaxation systems could maintain good stability in acidic and alkaline conditions. Additionally, nanozirconia could produce a warm effect, and nanotitanium dioxide had a clear sterilization effect. Moreover, the two abovementioned nanoparticles could be closely combined with fiberoptic materials. After treatment, the eye adjustment function, visual acuity, and diopter of the two groups were significantly improved, especially in the nanomaterial group. Additionally, using the nanomaterial eye relaxation system could better control intraocular pressure, reduce lens thickness, and improve the symptoms of eye fatigue. Furthermore, anxiety and depression were better reduced in the nanomaterial group, and their quality of life was greatly improved. Therefore, the far-infrared nanomaterial eye relaxation system combined with visual-motor training can be used as a new and effective scheme for pseudomyopia.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yi Liu
- School of Medical Technology and Engineering, Zhengzhou Railway Vocational and Technical College, Zhengzhou 450046, Henan, PR China
| | - Limin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, PR China
| | - Zongli Shi
- Department of Optometry, Changzhou Banshang Ophthalmic Hospital, Changzhou 213100, Jiangsu, PR China
| | - Lixiao Zhou
- Department of Ophthalmology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, PR China
| |
Collapse
|
6
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
7
|
Augustyniak A, Jablonska J, Cendrowski K, Głowacka A, Stephan D, Mijowska E, Sikora P. Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01695-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIncorporating zinc oxide nanoparticles (ZnO NPs) into cement mortars may provide additional functions, e.g., self-cleaning and antibacterial or electroconductive ability. However, these NPs are also known for their potential toxicity. During the life cycle of a cement mortar, various abrasive forces cause the release of admixtures to the natural environment. The effect of the released NPs on model microorganisms has not been extensively studied. Previous studies have shown that nanomaterials may affect various microorganisms’ physiological responses, including changes in metabolic activity, biofilming, or growth rate. In this study, we have focused on evaluating the response of model microorganisms, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, towards ZnO nanoparticles released from cement mortars in different deterioration scenarios. The addition of ZnO nanoparticles to cement mortars had a noticeable effect on impeding the strength development. We have also detected that depending on the deterioration scenario, the release of ZnO nanoparticles was varied. Our studies have also shown that even though the release of nanoform ZnO could be limited by poor dispersion or the used filtration technique, the eluates have caused slight but statistically significant changes in the physiological features of studied microorganisms showing relatively low toxicity.
Collapse
|
8
|
Li X, Ma Q, Liu T, Dong Z, Fan W. Effect of TiO2-nanoparticles on copper toxicity to bacteria: role of bacterial surface. RSC Adv 2020; 10:5058-5065. [PMID: 35498301 PMCID: PMC9049159 DOI: 10.1039/c9ra08270k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/04/2020] [Indexed: 11/21/2022] Open
Abstract
The impact of titanium dioxide nanoparticles (nano-TiO2) on the aquatic environment is an important issue due to their increasing application. Although nano-TiO2 was reported to show an effect on heavy metal toxicity to aquatic organisms, the underlying mechanism is not well understood. In this study, two bacterial species (Bacillus thuringiensis (B. thuringiensis) and Bacillus megaterium (B. megaterium)) from sediment were selected to study the effects of nano-TiO2 on copper toxicity. Nano-TiO2 was found to inhibit the growth of B. thuringiensis and enhance the oxidative stress damage caused by copper, whereas these effects were not observed for B. megaterium. Transmission electron microscopy and flow cytometry showed that B. thuringiensis has stronger association ability to nano-TiO2 than B. megaterium. The existence of the S-layer on the surface of B. thuringiensis might be the possible reason, leading to the difference in copper toxicity. This indicates that the characteristics of bacterial surfaces might be important to the toxicity responses of nanoparticles. Different surface characteristics of bacteria, for example, S-layer or exopolysaccharides, might lead to different effects of nanomaterials on metal toxicity.![]()
Collapse
Affiliation(s)
- Xiaomin Li
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Qingquan Ma
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Tong Liu
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Zhaomin Dong
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine
| | - Wenhong Fan
- School of Space and Environment
- Beihang University
- Beijing 100191
- P. R. China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine
| |
Collapse
|
9
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
10
|
Pinget G, Tan J, Janac B, Kaakoush NO, Angelatos AS, O'Sullivan J, Koay YC, Sierro F, Davis J, Divakarla SK, Khanal D, Moore RJ, Stanley D, Chrzanowski W, Macia L. Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction. Front Nutr 2019; 6:57. [PMID: 31165072 PMCID: PMC6534185 DOI: 10.3389/fnut.2019.00057] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
The interaction between gut microbiota and host plays a central role in health. Dysbiosis, detrimental changes in gut microbiota and inflammation have been reported in non-communicable diseases. While diet has a profound impact on gut microbiota composition and function, the role of food additives such as titanium dioxide (TiO2), prevalent in processed food, is less established. In this project, we investigated the impact of food grade TiO2 on gut microbiota of mice when orally administered via drinking water. While TiO2 had minimal impact on the composition of the microbiota in the small intestine and colon, we found that TiO2 treatment could alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis. These changes were associated with colonic inflammation, as shown by decreased crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased expression of inflammatory cytokines. These findings collectively show that TiO2 is not inert, but rather impairs gut homeostasis which may in turn prime the host for disease development.
Collapse
Affiliation(s)
- Gabriela Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Bartlomiej Janac
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra Sophie Angelatos
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - John O'Sullivan
- Department of Cardiology, Charles Perkins Centre, Royal Prince Alfred Hospital, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Department of Cardiology, Charles Perkins Centre, Royal Prince Alfred Hospital, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Frederic Sierro
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Joel Davis
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Dragana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Wojciech Chrzanowski
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Rivas-Castillo AM, Guatemala-Cisneros ME, Gómez-Ramírez M, Rojas-Avelizapa NG. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:533-540. [PMID: 30755080 DOI: 10.1080/10934529.2019.1571307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/25/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Spent catalysts represent an environmental concern, mainly due to their elevated metal content. Although conventional treatment methods for spent catalysts are available, they generate large volumes of potentially harmful wastes and gaseous emissions. To overcome the environmental impact, biotechnological approaches are currently being explored and developed. Thus, the current study assayed the capability of Bacillus megaterium strain MNSH1-9K-1 to remove Al, Ni, V and Ti contained in the spent catalyst coded as ECAT-TL-II. To this end, B. megaterium MNSH1-9K-1 growth and metal uptake abilities in the presence of ECAT-TL-II spent catalyst at 15% (wt/vol) pulp density were evaluated in modified Starkey medium at 37 °C and 200 rpm. The results presented here show B. megaterium resistance capability to the high-metal content residue, and its Al, V and Ni removal ability, in 1,059.15 ± 197.28 mg kg-1 of Al, 43.39 ± 24.13 mg kg-1 of V and 0.58 ± 0.00 mg kg-1 of Ni, corresponding to the 0.79%, 1.63% and 0.46% of each metal content, respectively, while no Ti removal was detected. Besides, it was observed that the sporulation process took place in B. megaterium cells in the presence of the spent catalyst. The results shown in this study suggest the potential of the strain MNSH1-9K-1 for the removal of metals contained in high-metal content residues, contributing also to the knowledge of the metal resistance and removal abilities of B. megaterium in the presence of a spent catalyst, and how morphological cell changes may be occurring while metal removal is taking place.
Collapse
Affiliation(s)
- Andrea M Rivas-Castillo
- a Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN , Querétaro , México
- b Universidad Tecnológica de Zona Metropolitana del Valle de México , Tizayuca , México
| | | | - Marlenne Gómez-Ramírez
- a Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN , Querétaro , México
| | - Norma G Rojas-Avelizapa
- a Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del IPN , Querétaro , México
| |
Collapse
|
12
|
Carvalho Naves MP, de Morais CR, Silva ACA, Dantas NO, Spanó MA, de Rezende AAA. Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2018; 112:273-281. [DOI: 10.1016/j.fct.2017.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023]
|
13
|
Haase A, Dommershausen N, Schulz M, Landsiedel R, Reichardt P, Krause BC, Tentschert J, Luch A. Genotoxicity testing of different surface-functionalized SiO 2, ZrO 2 and silver nanomaterials in 3D human bronchial models. Arch Toxicol 2017. [PMID: 28643002 DOI: 10.1007/s00204-017-2015-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhalation is considered a critical uptake route for NMs, demanding for sound toxicity testing using relevant test systems. This study investigates cytotoxicity and genotoxicity in EpiAirway™ 3D human bronchial models using 16 well-characterized NMs, including surface-functionalized 15 nm SiO2 (4 variants), 10 nm ZrO2 (4), and nanosilver (3), ZnO NM-110, TiO2 NM-105, BaSO4 NM-220, and two AlOOH NMs. Cytotoxicity was assessed by LDH and ATP assays and genotoxicity by the alkaline comet assay. For 9 NMs, uptake was investigated using inductively coupled plasma-mass spectrometry (ICP-MS). Most NMs were neither cytotoxic nor genotoxic in vitro. ZnO displayed a dose-dependent genotoxicity between 10 and 25 µg/cm2. Ag.50.citrate was genotoxic at 50 µg/cm2. A marginal but still significant genotoxic response was observed for SiO2.unmodified, SiO2.phosphate and ZrO2.TODS at 50 µg/cm2. For all NMs for which uptake in the 3D models could be assessed, the amount taken up was below 5% of the applied mass doses and was furthermore dose dependent. For in vivo comparison, published in vivo genotoxicity data were used and in addition, at the beginning of this study, two NMs were randomly selected for short-term (5-day) rat inhalation studies with subsequent comet and micronucleus assays in lung and bone marrow cells, respectively, i.e., ZrO2.acrylate and SiO2.amino. Both substances were not genotoxic neither in vivo nor in vitro. EpiAirway™ 3D models appear useful for NM in vitro testing. Using 16 different NMs, this study confirms that genotoxicity is mainly determined by chemical composition of the core material.
Collapse
Affiliation(s)
- Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Nils Dommershausen
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Markus Schulz
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Benjamin-Christoph Krause
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
14
|
Reis ÉDM, Rezende AAAD, Oliveira PFD, Nicolella HD, Tavares DC, Silva ACA, Dantas NO, Spanó MA. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem Toxicol 2016; 96:309-19. [PMID: 27562929 DOI: 10.1016/j.fct.2016.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms.
Collapse
Affiliation(s)
- Érica de Melo Reis
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Alexandre Azenha Alves de Rezende
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | | | | | | | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Noelio Oliveira Dantas
- Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Mário Antônio Spanó
- Laboratório de Mutagênese, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
15
|
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060575. [PMID: 27294942 PMCID: PMC4924032 DOI: 10.3390/ijerph13060575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/31/2023]
Abstract
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
Collapse
|
16
|
Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer TA, Köller M, Epple M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv 2016. [DOI: 10.1039/c5ra27836h] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The influence of silver nanoparticle morphology on their dissolution kinetics in ultrapure water as well as their biological effect on eukaryotic and prokaryotic cells was examined.
Collapse
Affiliation(s)
- J. Helmlinger
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- 45117 Essen
- Germany
| | - C. Sengstock
- Bergmannsheil University Hospital/Surgical Research
- Ruhr-University of Bochum
- 44789 Bochum
- Germany
| | - C. Groß-Heitfeld
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- 45117 Essen
- Germany
| | - C. Mayer
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- 45117 Essen
- Germany
| | - T. A. Schildhauer
- Bergmannsheil University Hospital/Surgical Research
- Ruhr-University of Bochum
- 44789 Bochum
- Germany
| | - M. Köller
- Bergmannsheil University Hospital/Surgical Research
- Ruhr-University of Bochum
- 44789 Bochum
- Germany
| | - M. Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- 45117 Essen
- Germany
| |
Collapse
|
17
|
Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 2015; 30:577-91. [PMID: 25964273 DOI: 10.1093/mutage/gev020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed.
Collapse
Affiliation(s)
- Kimberly S Butler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - David J Peeler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Brendan J Casey
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Benita J Dair
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Rosalie K Elespuru
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
18
|
Niemirowicz K, Swiecicka I, Wilczewska AZ, Markiewicz KH, Surel U, Kułakowska A, Namiot Z, Szynaka B, Bucki R, Car H. Growth arrest and rapid capture of select pathogens following magnetic nanoparticle treatment. Colloids Surf B Biointerfaces 2015; 131:29-38. [PMID: 25942700 DOI: 10.1016/j.colsurfb.2015.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Thorough understanding of magnetic nanoparticle (MNP) properties is essential for developing new theranostics. In this study, we provide evidence that non-modified magnetic iron oxide nanoparticles and their functionalized derivatives may be used to restrict growth and capture different pathogens. Coprecipitation of Fe(2+) and Fe(3+) ions in an alkaline solution was used to synthesize MNPs that subsequently were functionalized by gold and aminosilane coating. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to assess their physicochemical properties. A significant decrease of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans outgrown from medium after addition of MNPs or their derivatives was observed during 24h culture. Measurement of optical density revealed that using MNPs, these pathogens can be quickly captured and removed (with efficiency reaching almost 100%) from purposely infected saline buffer and body fluids such as human blood plasma, serum, abdominal fluids and cerebrospinal fluids. These effects depend on nanoparticle concentration, surface chemistry, the type of pathogen, as well as the surrounding environment.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland.
| | - Izabela Swiecicka
- Department of Microbiology, University of Białystok, J. K. Ciołkowski Street 1, 15-245 Białystok, Poland; Laboratory of Applied Microbiology, University of Białystok, J. K. Ciołkowski Street 1, 15-245 Białystok, Poland
| | | | - Karolina H Markiewicz
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland
| | - Urszula Surel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej - Curie 24A, 15-276 Białystok, Poland
| | - Zbigniew Namiot
- Department of Physiology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, IX WiekówKielc 19, 25-317 Kielce, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| |
Collapse
|