1
|
Yuan Y, Zhao Y, Li F, Ling C, Wu Y, Ma W, Wang Z, Yuan Y, Hao H, Zhang W. Inflammatory cytokine expression in Fabry disease: impact of disease phenotype and alterations under enzyme replacement therapy. Front Immunol 2024; 15:1367252. [PMID: 39234251 PMCID: PMC11371600 DOI: 10.3389/fimmu.2024.1367252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Objectives The aim of this study is to explore the expression of inflammatory cytokines (ICs) in Fabry disease (FD), the correlation between ICs and FD phenotypes, and the impact of enzyme replacement therapy (ERT) on IC expression. Methods We recruited 67 FD patients and 44 healthy controls (HCs) and detected concentrations of the following ICs: interferon-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17A, IL-17F, IL-22, tumor necrosis factor (TNF)-α, and TNF-β. We also analyzed the impact of ERT on IC expression in FD patients and the relationship between IC expression and sex, genotype, phenotype, disease burden, and biomarkers. Results Most ICs were significantly higher in FD patients than in HCs. A number of ICs were positively correlated with clinical aspects, including disease burden (Mainz Severity Score Index [MSSI]) and cardiac and renal markers. IL-8 was higher in the high MSSI (P-adj=0.026*) than in the low MSSI. Conclusions ICs were upregulated in FD patients, indicating the role of the innate immune process in FD etiology. ERT ameliorated FD-related inflammatory activation, at least to some extent. IC expression was positively correlated with disease burden and clinical markers in FD. Our findings indicated that the inflammatory pathway may be a promising therapeutic target for FD.
Collapse
Affiliation(s)
- Yujing Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yawen Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wei Ma
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| | - Hongjun Hao
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neuroimmunity, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| |
Collapse
|
2
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
3
|
Cacciapuoti M, Bertoldi G, Caputo I, Driussi G, Carraro G, Calò LA. Oxidative stress and its role in Fabry disease. J Nephrol 2024; 37:1201-1207. [PMID: 38878155 DOI: 10.1007/s40620-024-01934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 09/18/2024]
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A with consequent lysosomal accumulation of glycosphingolipids, particularly globotriaosylceramide in various organs. Currently, enzyme replacement therapy with recombinant human α-galactosidase is the cornerstone of the treatment of Fabry patients, although in the long term enzyme replacement therapy fails to halt disease progression, in particular in case of late diagnosis. This suggests that the adverse outcomes cannot be justified by the lysosomal accumulation of glycosphingolipids alone, and that additional therapies targeted at further pathophysiologic mechanisms might contribute to halting the progression of cardiac, cerebrovascular and kidney disease in Fabry patients. Recent evidence points toward the involvement of oxidative stress, oxidative stress signaling and inflammation in the pathophysiology of cardio cerebrovascular and kidney damage in Fabry patients. This review reports the current knowledge of the involvement of oxidative stress in Fabry disease, which clearly points toward the involvement of oxidative stress in the pathophysiology of the medium to long-term cardio-cerebrovascular-kidney damage of Fabry patients and summarizes the antioxidant therapeutic approaches currently available in the literature. This important role played by oxidative stress suggests potential novel additional therapeutic interventions by either pharmacologic or nutritional measures, on top of enzyme replacement therapy, aimed at improving/halting the progression of cardio-cerebrovascular disease and nephropathy that occur in Fabry patients.
Collapse
Affiliation(s)
- Martina Cacciapuoti
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Ilaria Caputo
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giulia Driussi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Gianni Carraro
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
4
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
5
|
Klug K, Spitzel M, Hans C, Klein A, Schottmann NM, Erbacher C, Üçeyler N. Endothelial Cell Dysfunction and Hypoxia as Potential Mediators of Pain in Fabry Disease: A Human-Murine Translational Approach. Int J Mol Sci 2023; 24:15422. [PMID: 37895103 PMCID: PMC10607880 DOI: 10.3390/ijms242015422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Fabry disease (FD) is caused by α-galactosidase A (AGAL) enzyme deficiency, leading to globotriaosylceramide accumulation (Gb3) in several cell types. Pain is one of the pathophysiologically incompletely understood symptoms in FD patients. Previous data suggest an involvement of hypoxia and mitochondriopathy in FD pain development at dorsal root ganglion (DRG) level. Using immunofluorescence and quantitative real-time polymerase chain reaction (qRT PCR), we investigated patient-derived endothelial cells (EC) and DRG tissue of the GLA knockout (KO) mouse model of FD. We address the question of whether hypoxia and mitochondriopathy contribute to FD pain pathophysiology. In EC of FD patients (P1 with pain and, P2 without pain), we found dysregulated protein expression of hypoxia-inducible factors (HIF) 1a and HIF2 compared to the control EC (p < 0.01). The protein expression of the HIF downstream target vascular endothelial growth factor A (VEGFA, p < 0.01) was reduced and tube formation was hampered in the P1 EC compared to the healthy EC (p < 0.05). Tube formation ability was rescued by applying transforming growth factor beta (TGFβ) inhibitor SB-431542. Additionally, we found dysregulated mitochondrial fusion/fission characteristics in the P1 and P2 EC (p < 0.01) and depolarized mitochondrial membrane potential in P2 compared to control EC (p < 0.05). Complementary to human data, we found upregulated hypoxia-associated genes in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). At protein level, nuclear HIF1a was higher in the DRG neurons of old GLA KO mice compared to WT mice (p < 0.01). Further, the HIF1a downstream target CA9 was upregulated in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). Similar to human EC, we found a reduction in the vascular characteristics in GLA KO DRG compared to WT (p < 0.05). We demonstrate increased hypoxia, impaired vascular properties, and mitochondrial dysfunction in human FD EC and complementarily at the GLA KO mouse DRG level. Our data support the hypothesis that hypoxia and mitochondriopathy in FD EC and GLA KO DRG may contribute to FD pain development.
Collapse
Affiliation(s)
- Katharina Klug
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Marlene Spitzel
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Clara Hans
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Alexandra Klein
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nicole Michelle Schottmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Christoph Erbacher
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Lillo R, Graziani F, Franceschi F, Iannaccone G, Massetti M, Olivotto I, Crea F, Liuzzo G. Inflammation across the spectrum of hypertrophic cardiac phenotypes. Heart Fail Rev 2023; 28:1065-1075. [PMID: 37115472 PMCID: PMC10403403 DOI: 10.1007/s10741-023-10307-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
The hypertrophic cardiomyopathy phenotype encompasses a heterogeneous spectrum of genetic and acquired diseases characterized by the presence of left ventricular hypertrophy in the absence of abnormal cardiac loading conditions. This "umbrella diagnosis" includes the "classic" hypertrophic cardiomyopathy (HCM), due to sarcomere protein gene mutations, and its phenocopies caused by intra- or extracellular deposits, such as Fabry disease (FD) and cardiac amyloidosis (CA). All these conditions share a wide phenotypic variability which results from the combination of genetic and environmental factors and whose pathogenic mediators are poorly understood so far. Accumulating evidence suggests that inflammation plays a critical role in a broad spectrum of cardiovascular conditions, including cardiomyopathies. Indeed, inflammation can trigger molecular pathways which contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation, and microvascular dysfunction. Growing evidence suggests that systemic inflammation is a possible key pathophysiologic process potentially involved in the pathogenesis of cardiac disease progression, influencing the severity of the phenotype and clinical outcome, including heart failure. In this review, we summarize current knowledge regarding the prevalence, clinical significance, and potential therapeutic implications of inflammation in HCM and two of its most important phenocopies, FD and CA.
Collapse
Affiliation(s)
- Rosa Lillo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesca Graziani
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy.
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Iacopo Olivotto
- Cardiology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Ebenuwa I, Violet PC, Padayatty SJ, Wang Y, Tu H, Wilkins KJ, Moore DF, Eck P, Schiffmann R, Levine M. Vitamin C Urinary Loss in Fabry Disease: Clinical and Genomic Characteristics of Vitamin C Renal Leak. J Nutr 2023; 153:1994-2003. [PMID: 37229630 PMCID: PMC10375496 DOI: 10.1016/j.tjnut.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Reduced plasma vitamin C concentrations in chronic diseases may result from abnormal urinary excretion of vitamin C: a renal leak. We hypothesized that vitamin C renal leak may be associated with disease-mediated renal dysregulation, resulting in aberrant vitamin C renal reabsorption and increased urinary loss. OBJECTIVES We investigated the prevalence, clinical characteristics, and genomic associations of vitamin C renal leak in Fabry disease, an X-linked lysosomal disease associated with renal tubular dysfunction and low plasma vitamin C concentrations. METHODS We conducted a non-randomized cross-sectional cohort study of men aged 24-42 y, with Fabry disease (n = 34) and controls without acute or chronic disease (n = 33). To match anticipated plasma vitamin C concentrations, controls were placed on a low-vitamin C diet 3 wk before inpatient admission. To determine the primary outcome of vitamin C renal leak prevalence, subjects were fasted overnight, and matched urine and fasting plasma vitamin C measurements were obtained the following morning. Vitamin C renal leak was defined as presence of urinary vitamin C at plasma concentrations below 38 μM. Exploratory outcomes assessed the association between renal leak and clinical parameters, and genomic associations with renal leak using single nucleotide polymorphisms (SNPs) in the vitamin C transporter SLC23A1. RESULTS Compared with controls, the Fabry cohort had 16-fold higher odds of renal leak (6% vs. 52%; OR: 16; 95% CI: 3.30, 162; P < 0.001). Renal leak was associated with higher protein creatinine ratio (P < 0.01) and lower hemoglobin (P = 0.002), but not estimated glomerular filtration rate (P = 0.54). Renal leak, but not plasma vitamin C, was associated with a nonsynonymous single nucleotide polymorphism in vitamin C transporter SLC23A1 (OR: 15; 95% CI: 1.6, 777; P = 0.01). CONCLUSIONS Increased prevalence of renal leak in adult men with Fabry disease may result from dysregulated vitamin C renal physiology and is associated with abnormal clinical outcomes and genomic variation.
Collapse
Affiliation(s)
- Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA.
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Sebastian J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Yaohui Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Hongbin Tu
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| | - Kenneth J Wilkins
- Biostatistics Program, Office of Clinical Research Support, Office of the Director, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David F Moore
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Peter Eck
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Raphael Schiffmann
- Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Biochemical Mechanisms beyond Glycosphingolipid Accumulation in Fabry Disease: Might They Provide Additional Therapeutic Treatments? J Clin Med 2023; 12:jcm12052063. [PMID: 36902850 PMCID: PMC10004377 DOI: 10.3390/jcm12052063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Currently, enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease's progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. Several studies reported how secondary biochemical processes beyond Gb3 and lyso-Gb3 accumulation-such as oxidative stress, compromised energy metabolism, altered membrane lipid, disturbed cellular trafficking, and impaired autophagy-might exacerbate Fabry disease adverse outcomes. This review aims to summarize the current knowledge of these pathogenetic intracellular mechanisms in Fabry disease, which might suggest novel additional strategies for its treatment.
Collapse
|
9
|
Beneficial in vitro effect of N-acetylcysteine and coenzyme Q10 on DNA damage in neurodegenerative Niemann-Pick type C 1 disease: preliminary results. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02423-7. [PMID: 36795166 DOI: 10.1007/s00210-023-02423-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.
Collapse
|
10
|
Hammerschmidt TG, Donida B, Raabe M, Faverzani JL, de Fátima Lopes F, Machado AZ, Kessler RG, Reinhardt LS, Poletto F, Moura DJ, Vargas CR. Evidence of redox imbalance and mitochondrial dysfunction in Niemann-Pick type C 1 patients: the in vitro effect of combined therapy with antioxidants and β-cyclodextrin nanoparticles. Metab Brain Dis 2023; 38:507-518. [PMID: 36447062 DOI: 10.1007/s11011-022-01128-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of β-cyclodextrin (β-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of β-CD to reduce cholesterol in fibroblasts from NPC1 patients. β-CD was used in its free and nanoparticulate form. We also evaluated the β-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing β-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining β-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free β-CD. The results obtained are promising regarding the combined use of β-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Collapse
Affiliation(s)
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Marco Raabe
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Andryele Z Machado
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rejane G Kessler
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Oxidative and chromosomal DNA damage in patients with type I Gaucher disease and carriers. Clin Biochem 2023; 111:26-31. [PMID: 36257477 DOI: 10.1016/j.clinbiochem.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Gaucher disease (GD) is caused by a genetic deficiency of the beta-glucocerebrosidase enzyme which results in the accumulation of glucosylceramide in macrophages. This accumulation may induce oxidative stress, resulting in DNA damage in patients with GD. The aim of this study was to assess plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and cytokinesis-block micronucleus cytome (CBMN-cyt) assay parameters in the peripheral blood lymphocytes of patients with GD and carriers, evaluate the possible associations of these values with GD, and determine whether they can be used as potential biomarkers in GD. METHODS This study included 20 patients with type 1 GD, six carriers, and 27 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of the patients with GD, carriers, and controls were evaluated and 8-OHdG levels in their plasma samples were measured. RESULTS CBMN-cyt assay parameters in patients with GD and carriers were not significantly different when compared with controls (p > 0.05). However, plasma 8-OHdG levels were found to be higher in both patients with GD and carriers than in control subjects (p < 0.01). CONCLUSIONS Oxidative DNA damage may be a useful prognostic tool, whereas the CBMN-cyt assay cannot be used as a predictive biomarker of GD.
Collapse
|
12
|
Fu L, Wasiak S, Tsujikawa LM, Rakai BD, Stotz SC, Wong NCW, Johansson JO, Sweeney M, Mohan CM, Khan A, Kulikowski E. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol Res Perspect 2022; 10:e00949. [PMID: 35417091 PMCID: PMC9007222 DOI: 10.1002/prp2.949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fabry disease (FD) is a rare X‐linked disorder of lipid metabolism, characterized by the accumulation of globotriaosylceramide (Gb3) due to defective the lysosomal enzyme, α‐galactosidase. Gb3 deposits activate immune‐mediated systemic inflammation, ultimately leading to life‐threatening consequences in multiple organs such as the heart and kidneys. Enzyme replacement therapy (ERT), the standard of care, is less effective with advanced tissue injury and inflammation in patients with FD. Here, we showed that MCP‐1 and TNF‐α cytokine levels were almost doubled in plasma from ERT‐treated FD patients. Chemokine receptor CCR2 surface expression was increased by twofold on monocytes from patients with low eGFR. We also observed an increase in IL12B transcripts in unstimulated peripheral blood mononuclear cells (PBMCs) over a 2‐year period of continuous ERT. Apabetalone is a clinical‐stage oral bromodomain and extra terminal protein inhibitor (BETi), which has beneficial effects on cardiovascular and kidney disease related pathways including inflammation. Here, we demonstrate that apabetalone, a BD2‐selective BETi, dose dependently reduced the production of MCP‐1 and IL‐12 in stimulated PBMCs through transcriptional regulation of their encoding genes. Reactive oxygen species production was diminished by up to 80% in stimulated neutrophils following apabetalone treatment, corresponding with inhibition of NOX2 transcription. This study elucidates that inhibition of BET proteins by BD2‐selective apabetalone alleviates inflammatory processes and oxidative stress in innate immune cells in general and in FD. These results suggest potential benefit of BD2‐selective apabetalone in controlling inflammation and oxidative stress in FD, which will be further investigated in clinical trials.
Collapse
Affiliation(s)
- Li Fu
- Resverlogix Corp, Calgary, AB, Canada
| | | | | | | | | | | | | | | | - Connie M Mohan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, AB, Canada
| | | |
Collapse
|
13
|
Wiest MRJ, Toro MD, Nowak A, Baur J, Fasler K, Hamann T, Al-Sheikh M, Zweifel SA. Globotrioasylsphingosine Levels and Optical Coherence Tomography Angiography in Fabry Disease Patients. J Clin Med 2021; 10:jcm10051093. [PMID: 33807900 PMCID: PMC7961664 DOI: 10.3390/jcm10051093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: To date, there are no studies associating the dried blood spot (DBS) levels of globotrioasylsphingosine (lysoGb3) with quantitative optical coherence tomography angiography (OCTA) parameters in Fabry disease (FD) patients. Here, we aimed to investigate the association between OCTA vessel density (VD), vessel length density (VLD) with DBS lysoGb3. Methods: A retrospective, single center analysis of all consecutive FD patients enrolled at the Department of Ophthalmology of the University Hospital of Zurich from 1 December 2017 to 9 September 2020. An association between VD and VLD detected by OCTA and lysoGb3 was investigated using a linear mixed model. Results: A total of 57 FD patients (23 male, 34 female; 109 eyes) were included. Forty-one patients suffered from the classic phenotype and 16 from the later-onset phenotype. LysoGb3 inversely correlated with VD and VLD in both the superficial (VD: p = 0.034; VLD: p = 0.02) and deep capillary plexus (VD: p = 0.017; VLD: p = 0.018) in the overall FD cohort. Conclusions: Our study shows an association between lysoGb3 and OCTA VD and VLD. This supports the hypothesis that quantitative OCTA parameters might be useful as diagnostic biomarkers for evaluating systemic involvement in FD, and possibly other diseases.
Collapse
Affiliation(s)
- Maximilian Robert Justus Wiest
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
| | - Mario Damiano Toro
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
- Faculty of Medical Sciences, Collegium Medicum, Cardinal Stefan Wyszyński University, 01815 Warsaw, Poland
| | - Albina Nowak
- Department of Endocrinology and Clinical Nutrition, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
- Department of Internal Medicine, Psychiatry University Clinic Zurich, 8091 Zurich, Switzerland
| | - Joel Baur
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
| | - Katrin Fasler
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
| | - Timothy Hamann
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
| | - Mayss Al-Sheikh
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.R.J.W.); (M.D.T.); (J.B.); (K.F.); (T.H.); (M.A.-S.)
- Correspondence: ; Tel.: +41-44-255-87-94
| |
Collapse
|
14
|
Lo Curto A, Taverna S, Costa MA, Passantino R, Augello G, Adamo G, Aiello A, Colomba P, Zizzo C, Zora M, Accardi G, Candore G, Francofonte D, Di Chiara T, Alessandro R, Caruso C, Duro G, Cammarata G. Can Be miR-126-3p a Biomarker of Premature Aging? An Ex Vivo and In Vitro Study in Fabry Disease. Cells 2021; 10:356. [PMID: 33572275 PMCID: PMC7915347 DOI: 10.3390/cells10020356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by lysosomal accumulation of glycosphingolipids in a wide variety of cytotypes, including endothelial cells (ECs). FD patients experience a significantly reduced life expectancy compared to the general population; therefore, the association with a premature aging process would be plausible. To assess this hypothesis, miR-126-3p, a senescence-associated microRNA (SA-miRNAs), was considered as an aging biomarker. The levels of miR-126-3p contained in small extracellular vesicles (sEVs), with about 130 nm of diameter, were measured in FD patients and healthy subjects divided into age classes, in vitro, in human umbilical vein endothelial cells (HUVECs) "young" and undergoing replicative senescence, through a quantitative polymerase chain reaction (qPCR) approach. We confirmed that, in vivo, circulating miR-126 levels physiologically increase with age. In vitro, miR-126 augments in HUVECs underwent replicative senescence. We observed that FD patients are characterized by higher miR-126-3p levels in sEVs, compared to age-matched healthy subjects. We also explored, in vitro, the effect on ECs of glycosphingolipids that are typically accumulated in FD patients. We observed that FD storage substances induced in HUVECs premature senescence and increased of miR-126-3p levels. This study reinforces the hypothesis that FD may aggravate the normal aging process.
Collapse
Affiliation(s)
- Alessia Lo Curto
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Simona Taverna
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Maria Assunta Costa
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Rosa Passantino
- Institute of Byophysics, National Research Council (CNR), 90146 Palermo, Italy; (M.A.C.); (R.P.)
| | - Giuseppa Augello
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Paolo Colomba
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Carmela Zizzo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Marco Zora
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Daniele Francofonte
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Tiziana Di Chiara
- Department PROMISE, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Riccardo Alessandro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-Section of Biology and Genetics, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| | - Giuseppe Cammarata
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy; (A.L.C.); (S.T.); (G.A.); (G.A.); (P.C.); (C.Z.); (M.Z.); (D.F.); (R.A.); (G.D.)
| |
Collapse
|
15
|
Rosa NS, Bento JCDB, Caparbo VDF, Pereira RMR. Increased Serum Interleukin-6 and Tumor Necrosis Factor Alpha Levels in Fabry Disease: Correlation with Disease Burden. Clinics (Sao Paulo) 2021; 76:e2643. [PMID: 34287477 PMCID: PMC8266164 DOI: 10.6061/clinics/2021/e2643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Fabry disease (FD) is an X-linked lysosomal disease caused by variants of the GLA gene; the formation of defective alpha-galactosidase A contributes to the accumulation of substrates in several organs. Chronic inflammation is thought to contribute to organ damage in FD patients. METHODS In total, 36 classic FD patients (15 men/21 women) and 25 healthy controls (20 men/8 women) were assessed. The Mainz Severity Score Index (MSSI) was established after conducting interviews with the patients and chart review. Serum IL-6, IL-1β, and TNF-α levels were evaluated in both groups. RESULTS The mean age (years) for FD patients was 43.1±15.4 and that for the controls was 47.4±12.2 (p>0.05). Twenty-two patients (59.5%) were treated with enzyme replacement therapy (ERT). Serum IL-6 and TNF-α levels were significantly higher in FD patients than in the controls. Patients treated with ERT had higher serum IL-6 and TNF-α levels than those not treated with ERT. There was no difference in the serum IL-1β levels between patients treated with ERT and those who were not. The MSSI scores in the patients were correlated with serum levels of IL-6 (r=0.60, p<0.001) and TNF-α (r=0.45, p<0.001). CONCLUSION FD was associated with elevated serum levels of IL-6 and TNF-α in this cohort. The FD patients treated with ERT, particularly, women, exhibited higher levels of serum IL-6 and TNF-α than those not treated with ERT; the serum IL-6 and TNF-α levels were correlated with the MSSI scores reflecting greater disease burden.
Collapse
Affiliation(s)
- Nilton Salles Rosa
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | - Valéria de Falco Caparbo
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
16
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
17
|
Wang WT, Sung SH, Liao JN, Hsu TR, Niu DM, Yu WC. Cardiac manifestations in patients with classical or cardiac subtype of Fabry disease. J Chin Med Assoc 2020; 83:825-829. [PMID: 32649415 PMCID: PMC7478196 DOI: 10.1097/jcma.0000000000000379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disorder engendered by a deficiency of the enzyme α-galactosidase A, leading to systemic accumulation of glycolipids. Studies have reported that the cardiac subtype of FD has a later onset and minimal extracardiac involvement. However, whether the severity of cardiac involvement differs between the classic and cardiac subtypes of FD remains unclear. METHODS We enrolled consecutive patients with classic FD (n = 22; median age [25th-75th percentile], 47.0 [32.75-56.25] years; men, 72.7%) as well as age- and sex-matched patients with a later-onset cardiac subtype of FD who were selected from our cohort of patients with IVS4 919G>A mutation. FD was diagnosed on the basis of clinical symptoms/signs and pedigree screening of index case, plasma α-galactosidase activity, and molecular analysis. Data on clinical manifestations, laboratory findings, and echocardiogram findings were collected before enzyme replacement treatment. Disease severity was evaluated using the Mainz Severity Score Index score. RESULTS All female patients demonstrated heterozygous mutations, with five, one, and four of them showing normal α-galactosidase activity, classic FD, and cardiac subtype of FD, respectively. The distributions of left ventricular performance indices and comorbidities, including hypertension, diabetes mellitus, and dyslipidemia, were similar between the two groups. Moreover, MSSI cardiovascular scores did not differ significantly between the groups (classic vs cardiac subtype, 10.0 [2.0-12.5] vs 10.5 [9.0-15.25]; p = 0.277). CONCLUSION Cardiac manifestations are similar between patients with classic and cardiac subtype of FD.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Department of Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Hsien Sung
- Department of Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jo-Nan Liao
- Department of Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wen-Chung Yu
- Department of Medicine, Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Address correspondence. Dr. Wen-Chung Yu, Department of Medicine, Division of Cardiology, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. Email address: (W.-C. Yu)
| |
Collapse
|
18
|
Towarnicki SG, Kok LM, Ballard JWO. Yin and Yang of mitochondrial ROS in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104022. [PMID: 32045573 DOI: 10.1016/j.jinsphys.2020.104022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/12/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, we test the hypothesis that Drosophila larvae producing mildly elevated levels of endogenous mitochondrial reactive oxygen species (ROS) benefit in stressful environmental conditions due to the priming of antioxidant responses. Reactive oxygen species (ROS) are produced as a by-product of oxidative phosphorylation and may be elevated when mutations decrease the efficiency of ATP production. In moderation, ROS are necessary for cell signaling and organismal health, but in excess can damage DNA, proteins, and lipids. We utilize two Drosophila melanogaster strains (Dahomey and Alstonville) that share the same nuclear genetic background but differ in their mitochondrial DNA haplotypes. Previously, we reported that Dahomey larvae harboring the V161L ND4 mtDNA mutation have reduced proton pumping and higher levels of mitochondrial ROS than Alstonville larvae when they are fed a 1:2 protein: carbohydrate (P:C) diet. Here, we explore the potential for mitochondrial ROS to provide resistance to dietary stressors by feeding larvae 1:2 P:C food supplemented with ethanol or hydrogen peroxide (H2O2). When fed a diet supplemented with ethanol or H2O2, Dahomey develop more quickly than Alstonville into larger pupae, while Alstonville developed faster on the control. Dahomey larvae displayed higher antioxidant capacity than Alstonville on all diets, with mitochondrial H2O2 levels unchanged after the addition of stressors. Addition of stressors to the diet did not affect the mitochondrial functions of Dahomey larvae as measured by mitochondrial membrane potential, respiratory control ratio, or larval survival after bacterial challenge. In contrast, Alstonville larvae developed slower, had lower pupal weight, higher cytosolic H2O2, and had reduced mitochondrial functions. Further, Alstonville larvae fed the ethanol treated diet had lower survival after bacterial infection than those fed the control diet. Surprisingly, they had greater survival when fed diet with H2O2 indicating a mitotype by stressor interaction that influences the immune response. Overall, these data suggest that elevated mitochondrial ROS in Dahomey can result in greater antioxidant capacity that prevents oxidative damage from exogenous stressors and may be a conserved response to high ethanol found in rotting fruit.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Leanne M Kok
- Saxion University of Applied Sciences Maarten Harpertszoon Tromplaan 28, 7513 AB Enschede, The Netherlands.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
19
|
Monguzzi E, Marabini L, Elli L, Vaira V, Ferrero S, Ferretti F, Branchi F, Gaudioso G, Scricciolo A, Lombardo V, Doneda L, Roncoroni L. Gliadin effect on the oxidative balance and DNA damage: An in-vitro, ex-vivo study. Dig Liver Dis 2019; 51:47-54. [PMID: 30055963 DOI: 10.1016/j.dld.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/29/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gliadins are involved in gluten-related disorders and are responsible for the alteration of the cellular redox balance. It is not clear if the gliadin-related oxidative stress can induce DNA damage in enterocytes. AIM To investigate any possible genotoxicity caused by gliadin and to assess its relationship with oxidative stress in vitro and ex vivo. METHODS Caco-2 cells were exposed for 6-12-24 h to increasing concentrations (250 μg/mL-1000 μg/mL) of digested gliadin. We investigated: cytotoxicity, oxidative balance (reactive oxygen species, ROS), DNA damage (comet assay and γ-H2AX detection), transglutaminase type 2 (TG2) activity and annexin V expression. H2AX and 8-OHG immunohistochemistry has been evaluated on duodenal biopsies of celiac subjects and controls. RESULTS Gliadin induced a significant increase (+50%) of ROS after 12 h of exposition starting with a 500 μg/mL dose of gliadin. Comet assay and γ-H2AX demonstrated DNA damage, evident at the gliadin concentration of 500 μg/mL after 24 h. TG2 activity increased in chromatin and cytoskeleton cellular compartments at different gliadin doses (250/500/1000 μg/mL). The γ-H2AX and 8-OHG immunohistochemistry was altered in the duodenal biopsies of celiac patients. CONCLUSIONS Gliadin induces cellular oxidative stress, DNA damage and pro-apoptotic stimulation in Caco-2 cells and in the duodenal mucosa of celiac patients.
Collapse
Affiliation(s)
- Erika Monguzzi
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Marabini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Luca Elli
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy.
| | - Valentina Vaira
- Division of Pathology, IRCCS Ca' Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, IRCCS Ca' Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Ferretti
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Branchi
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, IRCCS Ca' Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy
| | - Alice Scricciolo
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy
| | - Vincenza Lombardo
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Leda Roncoroni
- Gastroenterology and Endoscopy Unit - Center for Prevention and Diagnosis of Celiac Disease, IRCCS Ca's Granda Foundation "Ospedale Maggiore Policlinico", Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Diaz Jacques CE, de Souza HM, Sperotto ND, Veríssimo RM, da Rosa HT, Moura DJ, Saffi J, Giugliani R, Vargas CR. Hunter syndrome: Long-term idursulfase treatment does not protect patients against DNA oxidation and cytogenetic damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 835:21-24. [DOI: 10.1016/j.mrgentox.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
|
21
|
Kuramoto Y, Naito AT, Tojo H, Sakai T, Ito M, Shibamoto M, Nakagawa A, Higo T, Okada K, Yamaguchi T, Lee JK, Miyagawa S, Sawa Y, Sakata Y, Komuro I. Generation of Fabry cardiomyopathy model for drug screening using induced pluripotent stem cell-derived cardiomyocytes from a female Fabry patient. J Mol Cell Cardiol 2018; 121:256-265. [PMID: 30048710 DOI: 10.1016/j.yjmcc.2018.07.246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fabry disease is an X-linked disease caused by mutations in α-galactosidase A (GLA); these mutations result in the accumulation of its substrates, mainly globotriaosylceramide (Gb3). The accumulation of glycosphingolipids induces pathogenic changes in various organs, including the heart, and Fabry cardiomyopathy is the most frequent cause of death in patients with Fabry disease. Existing therapies to treat Fabry disease have limited efficacy, and new approaches to improve the prognosis of patients with Fabry cardiomyopathy are required. METHODS AND RESULTS We generated induced pluripotent stem cell (iPSC) lines from a female patient and her son. Each iPSC clone from the female patient showed either deficient or normal GLA activity, which could be used as a Fabry disease model or its isogenic control, respectively. Erosion of the inactivated X chromosome developed heterogeneously among clones, and mono-allelic expression of the GLA gene was maintained for a substantial period in a subset of iPSC clones. Gb3 accumulation was observed in iPSC-derived cardiomyocytes (iPS-CMs) from GLA activity-deficient iPSCs by mass-spectrometry and immunofluorescent staining. The expression of ANP was increased, but the cell surface area was decreased in iPS-CMs from the Fabry model, suggesting that cardiomyopathic change is ongoing at the molecular level in Fabry iPS-CMs. We also established an algorithm for selecting proper Gb3 staining that could be used for high-content analysis-based drug screening. CONCLUSIONS We generated a Fabry cardiomyopathy model and a drug screening system by using iPS-CMs from a female Fabry patient. Drug screening using our system may help discover new drugs that would improve the prognosis of patients with Fabry cardiomyopathy.
Collapse
Affiliation(s)
- Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Atsuhiko T Naito
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ohta-ku, Tokyo, Japan.
| | - Hiromasa Tojo
- Department of Biophysics and Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Taku Sakai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, the University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Masato Shibamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akito Nakagawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Katsuki Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Toshihiro Yamaguchi
- Department of Cardiovascular Medicine, the University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan; Department of Advanced Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, the University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| |
Collapse
|
22
|
Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 2017; 122:19-27. [PMID: 28947349 DOI: 10.1016/j.ymgme.2017.09.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023]
Abstract
Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible.
Collapse
Affiliation(s)
- Paula Rozenfeld
- IIFP (Instituto de Estudios Inmunológicos y Fisiopatológicos) UNLP, CONICET, Facultad de Ciencias Exactas, Buenos Aires, Argentina.
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy.
| |
Collapse
|
23
|
Serum Bilirubin Levels and Promoter Variations in HMOX1 and UGT1A1 Genes in Patients with Fabry Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9478946. [PMID: 28951772 PMCID: PMC5603749 DOI: 10.1155/2017/9478946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/09/2017] [Indexed: 11/17/2022]
Abstract
The aim of our study was to assess the possible relationships among heme oxygenase (HMOX), bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variations, serum bilirubin levels, and Fabry disease (FD). The study included 56 patients with FD (M : F ratio = 0.65) and 185 healthy individuals. Complete standard laboratory and clinical work-up was performed on all subjects, together with the determination of total peroxyl radical-scavenging capacity. The (GT)n and (TA)n dinucleotide variations in the HMOX1 and UGT1A1 gene promoters, respectively, were determined by DNA fragment analysis. Compared to controls, patients with FD had substantially lower serum bilirubin levels (12.0 versus 8.85 μmol/L, p = 0.003) and also total antioxidant capacity (p < 0.05), which showed a close positive relationship with serum bilirubin levels (p = 0.067) and the use of enzyme replacement therapy (p = 0.036). There was no association between HMOX1 gene promoter polymorphism and manifestation of FD. However, the presence of the TA7 allele UGT1A1 gene promoter, responsible for higher systemic bilirubin levels, was associated with a twofold lower risk of manifestation of FD (OR = 0.51, 95% CI = 0.27-0.97, p = 0.038). Markedly lower serum bilirubin levels in FD patients seem to be due to bilirubin consumption during increased oxidative stress, although UGT1A1 promoter gene polymorphism may modify the manifestation of FD as well.
Collapse
|
24
|
Biancini GB, Morás AM, Reinhardt LS, Busatto FF, de Moura Sperotto ND, Saffi J, Moura DJ, Giugliani R, Vargas CR. Globotriaosylsphingosine induces oxidative DNA damage in cultured kidney cells. Nephrology (Carlton) 2017; 22:490-493. [DOI: 10.1111/nep.12977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Giovana Brondani Biancini
- Graduate Program in Biological Sciences: Biochemistry; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
- Medical Genetics Service; Clinical Hospital of Porto Alegre (HCPA); Porto Alegre RS Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology; Federal University of Life Sciences of Porto Alegre (UFSCPA); Porto Alegre RS Brazil
| | - Luiza Steffens Reinhardt
- Laboratory of Genetic Toxicology; Federal University of Life Sciences of Porto Alegre (UFSCPA); Porto Alegre RS Brazil
| | - Franciele Faccio Busatto
- Laboratory of Genetic Toxicology; Federal University of Life Sciences of Porto Alegre (UFSCPA); Porto Alegre RS Brazil
| | | | - Jenifer Saffi
- Laboratory of Genetic Toxicology; Federal University of Life Sciences of Porto Alegre (UFSCPA); Porto Alegre RS Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology; Federal University of Life Sciences of Porto Alegre (UFSCPA); Porto Alegre RS Brazil
| | - Roberto Giugliani
- Graduate Program in Biological Sciences: Biochemistry; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
- Medical Genetics Service; Clinical Hospital of Porto Alegre (HCPA); Porto Alegre RS Brazil
- Department of Genetics; UFRGS; Porto Alegre RS Brazil
| | - Carmen Regla Vargas
- Graduate Program in Biological Sciences: Biochemistry; Federal University of Rio Grande do Sul (UFRGS); Porto Alegre RS Brazil
- Medical Genetics Service; Clinical Hospital of Porto Alegre (HCPA); Porto Alegre RS Brazil
- Graduate Program in Pharmaceutical Sciences; UFRGS; Porto Alegre RS Brazil
| |
Collapse
|
25
|
Eikrem Ø, Skrunes R, Tøndel C, Leh S, Houge G, Svarstad E, Marti HP. Pathomechanisms of renal Fabry disease. Cell Tissue Res 2017; 369:53-62. [PMID: 28401309 DOI: 10.1007/s00441-017-2609-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Rannveig Skrunes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Donida B, Jacques CED, Mescka CP, Rodrigues DGB, Marchetti DP, Ribas G, Giugliani R, Vargas CR. Oxidative damage and redox in Lysosomal Storage Disorders: Biochemical markers. Clin Chim Acta 2017; 466:46-53. [DOI: 10.1016/j.cca.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 02/03/2023]
|
27
|
Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MAB, Peluso G, Stuppia L, Galderisi U. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol 2017; 232:3454-3467. [PMID: 28098348 DOI: 10.1002/jcp.25807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Esposito
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging; Division of Neurology and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianfranco Peluso
- Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
28
|
Tseng WL, Chou SJ, Chiang HC, Wang ML, Chien CS, Chen KH, Leu HB, Wang CY, Chang YL, Liu YY, Jong YJ, Lin SZ, Chiou SH, Lin SJ, Yu WC. Imbalanced Production of Reactive Oxygen Species and Mitochondrial Antioxidant SOD2 in Fabry Disease-Specific Human Induced Pluripotent Stem Cell-Differentiated Vascular Endothelial Cells. Cell Transplant 2016; 26:513-527. [PMID: 27938475 DOI: 10.3727/096368916x694265] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fabry disease (FD) is an X-linked inherited lysosomal storage disease caused by α-galactosidase A (GLA) deficiency. Progressive intracellular accumulation of globotriaosylceramide (Gb3) is considered to be pathogenically responsible for the phenotype variability of FD that causes cardiovascular dysfunction; however, molecular mechanisms underlying the impairment of FD-associated cardiovascular tissues remain unclear. In this study, we reprogrammed human induced pluripotent stem cells (hiPSCs) from peripheral blood cells of patients with FD (FD-iPSCs); subsequently differentiated them into vascular endothelial-like cells (FD-ECs) expressing CD31, VE-cadherin, and vWF; and investigated their ability to form vascular tube-like structures. FD-ECs recapitulated the FD pathophysiological phenotype exhibiting intracellular Gb3 accumulation under a transmission electron microscope. Moreover, compared with healthy control iPSC-derived endothelial cells (NC-ECs), reactive oxygen species (ROS) production considerably increased in FD-ECs. Microarray analysis was performed to explore the possible mechanism underlying Gb3 accumulation-induced ROS production in FD-ECs. Our results revealed that superoxide dismutase 2 (SOD2), a mitochondrial antioxidant, was significantly downregulated in FD-ECs. Compared with NC-ECs, AMPK activity was significantly enhanced in FD-ECs. Furthermore, to investigate the role of Gb3 in these effects, human umbilical vein endothelial cells (HUVECs) were treated with Gb3. After Gb3 treatment, we observed that SOD2 expression was suppressed and AMPK activity was enhanced in a dose-dependent manner. Collectively, our results indicate that excess accumulation of Gb3 suppressed SOD2 expression, increased ROS production, enhanced AMPK activation, and finally caused vascular endothelial dysfunction. Our findings suggest that dysregulated mitochondrial ROS may be a potential target for treating FD.
Collapse
|
29
|
Biancini GB, Jacques CE, Hammerschmidt T, de Souza HM, Donida B, Deon M, Vairo FP, Lourenço CM, Giugliani R, Vargas CR. Biomolecules damage and redox status abnormalities in Fabry patients before and during enzyme replacement therapy. Clin Chim Acta 2016; 461:41-6. [DOI: 10.1016/j.cca.2016.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/22/2023]
|
30
|
Giugliani R, Vairo FP, Riegel M, de Souza CFM, Schwartz IVD, Pena SDJ. Rare disease landscape in Brazil: report of a successful experience in inborn errors of metabolism. Orphanet J Rare Dis 2016; 11:76. [PMID: 27282290 PMCID: PMC4901491 DOI: 10.1186/s13023-016-0458-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
Brazil is a country of continental dimensions, with many social inequalities. The latter are reflected on its health system, which comprises a large public component called SUS, a small paid health insurance component and a third very small private component, in which patients pay personally for medical services. Seventy five percent of the population depends on SUS, which thus far does not provide adequate coverage for genetic medical procedures. In 2014, SUS introduced the “Policy for the Integral Attention to Subjects with Rare Diseases”, establishing guidelines for offering diagnosis and treatment. The policy defines the two main axes, genetic and non-genetic rare diseases. In this fashion, public genetic services in SUS will be installed and funded not by themselves, but as part of the more general policy of rare diseases. Unfortunately, up to now this policy is still depending on financial allowances to be effectively launched. In this article, our intention was to describe activities developed in the area of inborn errors of metabolism by a Brazilian reference center. In spite of the lack of support of SUS, thousands of Brazilian families affected by rare genetic metabolic disorders, and many health professionals from all regions of Brazil, already have benefited from the services, training programs and research projects provided by this comprehensive center.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil. .,Department of Genetics, UFRGS, Porto Alegre, RS, Brazil. .,Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil.
| | - Filippo P Vairo
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Carolina F M de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil
| | - Ida V D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Porto Alegre, RS, Brazil.,Department of Genetics, UFRGS, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, RS, Brazil
| | - Sérgio D J Pena
- Laboratório de Genômica Clínica da Faculdade de Medicina and Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|