1
|
Shayestehyekta M, Moradi M. Graphene oxide and silymarin combination: A novel approach to improving post-cryopreservation quality of ram sperm. Cryobiology 2025; 118:105199. [PMID: 39800041 DOI: 10.1016/j.cryobiol.2025.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) has been extensively studied for its diverse biomedical applications, including drug delivery, imaging, and tissue engineering. Silymarin, as a flavonoid complex derived from the milk thistle plant, has recently shown potential health benefits, particularly concerning reproductive health. This study aims to evaluate the effects of GO and silymarin supplementation, both individually and in combination, on the characteristics of frozen-thawed ram sperm. Semen samples were collected using standard artificial insemination (AI) techniques with an artificial vagina. The collected semen was evaluated and cryopreserved in a tris-based extender containing varying concentrations of silymarin and GO (0, 10, or 20 μg/mL) or their combination. Post-thaw assessments evaluated sperm motility, viability, morphological abnormalities, DNA integrity, membrane integrity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, and total antioxidant capacity (TAC). Our findings revealed that the combination of 20 μg/mL silymarin and 20 μg/mL GO significantly enhanced total motility, viability, membrane integrity, and DNA integrity of sperm. Additionally, this treatment effectively reduced morphological abnormalities and MDA levels post-thawing. Notably, SOD and TAC activities were improved following the freeze-thaw compared to other treatment groups. In conclusion, the combination of silymarin and GO significantly improves the quality of frozen-thawed ram sperm by enhancing sperm parameters while reducing oxidative stress markers. The results suggest their potential as effective additives in cryopreservation protocols, providing a promising avenue for improving reproductive outcomes in rams and potentially other livestock species.
Collapse
Affiliation(s)
- Mohsen Shayestehyekta
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mojtaba Moradi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Pham ND, Nguyen THN, Vu NBD, Tran TNM, Pham BN, Le HS, Vo KH, Le XC, Tran LBH, Nguyen MH. Comparison of the radioprotective effects of the liposomal forms of five natural radioprotectants in alleviating the adverse effects of ionising irradiation on human lymphocytes and skin cells in radiotherapy. J Microencapsul 2023; 40:613-629. [PMID: 37815151 DOI: 10.1080/02652048.2023.2268705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay. All prepared Lip-NRPs had a mean diameter less than 240 nm, polydispersity index less than 0.32, and zeta potential more than -23 mV. Among them, the radioprotective effect of Lip-RES was lowest, while that of Lip-QUE was highest. Lip-SIL also exhibited a high radioprotective effect despite its low DPPH-radical scavenging activity (12.9%). The radioprotective effects of Lip-NRPs do not solely depend on the free radical scavenging activity of NRPs but also on their ability to activate cellular mechanisms.
Collapse
Affiliation(s)
- Ngoc-Duy Pham
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | | | - Ngoc-Bich-Dao Vu
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Thi-Ngoc-Mai Tran
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Bao-Ngoc Pham
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Hoang-Sinh Le
- VN-UK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | - Kim-Hai Vo
- Department of Health of Lam-Dong Province, Da Lat, Vietnam
| | - Xuan-Cuong Le
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Le-Bao-Ha Tran
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
| | - Minh-Hiep Nguyen
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| |
Collapse
|
5
|
Daniels VR, Williams ES. Exploring the complexities of drug formulation selection, storage, and shelf-life for exploration spaceflight. Br J Clin Pharmacol 2023. [PMID: 37940128 DOI: 10.1111/bcp.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Medications have been a part of space travel dating back to the Apollo missions. Currently, medical kits aboard the International Space Station (ISS) contain medications and supplies to treat a variety of possible medical events. As we prepare for more distant exploration missions to Mars and beyond, risk management planning for astronaut healthcare should include the assembly of a medication formulary that is comprehensive enough to prevent or treat anticipated medical events, remains safe and chemically stable, and retains sufficient potency to last for the duration of the mission. Emerging innovation and technologies in pharmaceutical development, delivery, quality maintenance, and validation offer promise for addressing these challenges. The present editorial will summarize the current state of knowledge regarding innovative formulary optimization strategies, pharmaceutical stability assessment techniques, and storage and packaging solutions that could enhance drug safety and efficacy for future exploration spaceflight missions.
Collapse
|
6
|
Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023; 15:1944. [PMID: 37514130 PMCID: PMC10383758 DOI: 10.3390/pharmaceutics15071944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herbal chemicals with a long history in medicine have attracted a lot of attention. Flavonolignans and flavonoids are considered as two classes of the above-mentioned compounds with different functional groups which exhibit several therapeutic capabilities such as antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and anticancer activities. Based on the studies, high hydrophobic properties of the aforementioned compounds limit their bioavailability inside the human body and restrict their wide application. Nanoscale formulations such as solid lipid nanoparticles, liposomes, and other types of lipid-based delivery systems have been introduced to overcome the above-mentioned challenges. This approach allows the aforementioned hydrophobic therapeutic compounds to be encapsulated between hydrophobic structures, resulting in improving their bioavailability. The above-mentioned enhanced delivery system improves delivery to the targeted sites and reduces the daily required dosage. Lowering the required daily dose improves the performance of the drug by diminishing its side effects on non-targeted tissues. The present study aims to highlight the recent improvements in implementing lipid-based nanocarriers to deliver flavonolignans and flavonoids.
Collapse
Affiliation(s)
- Shahla Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol 9861335856, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht 4199613776, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Azadeh Mohammadi Sepahvand
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7148664685, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol 9861335856, Iran
| | - Mohammad Mehdi Zahedi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
7
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
10
|
Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch Pharm Res 2022; 45:743-760. [PMID: 36178580 DOI: 10.1007/s12272-022-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to develop a solid dispersion formulation of silymarin (Silymarin-SD) using freeze-drying method to enhance its oral bioavailability (BA) by inhibiting the intestinal first-pass effect and increasing its solubility and permeability. Silymarin-SD formulation (i.e., silymarin:tween 80:hydroxypropyl cellulose (HPC) = 1:1:3 (w/w/w) significantly increased silymarin permeability in the duodenum, jejunum, and ileum by decreasing the efflux ratio of silymarin and by inhibiting silymarin-glucuronidation activity, in which tween 80 played a crucial role. As a result, orally administered Silymarin-SD formulation increased plasma silymarin concentrations and decreased silymarin-glucuronide in rats compared with silymarin alone and silymmarin:D-α-tocopherol polyethylene glycol 1000 succinate (1:1, w/w) formulation. In addition to modulating intestinal first-pass effect, Silymarin-SD formulation showed a significantly higher cumulative dissolution for 120 min compared with that of silymarin from the physical mixture (PM) of the same composition as Silymarin-SD and silymarin alone; the relative BA of silymarin-SD increased to 215% and 589% compared with silymarin-PM and silymarin alone, respectively. This could be attributed to the amorphous status of the Silymarin-SD formulation without chemical interaction with excipients, such as tween 80 and HPC. Moreover, the hepatoprotective effect of Silymarin-SD in acetaminophen-induced acute hepatotoxicity, as estimated from the alanine aminotransferase and aspartate aminotransferase values, was superior to that of silymarin. In conclusion, the increase in the dissolution rate and intestinal permeability of silymarin, and the inhibition of silymarin-glucuronidation by the Silymarin-SD formulation, prepared using tween 80 and HPC, increased its plasma concentration and resulted in a superior hepatoprotective effect compared to silymarin.
Collapse
|
11
|
Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front Cell Dev Biol 2022; 10:915785. [PMID: 35959493 PMCID: PMC9360593 DOI: 10.3389/fcell.2022.915785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuran Li
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyu Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
12
|
Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021; 10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Radiation treatments often unfavorably damage neighboring healthy organs and cause a series of radiation sequelae, such as radiation-induced hematopoietic system diseases, radiation-induced gastrointestinal diseases, radiation-induced lung diseases, and radiation-induced skin diseases. Recently, emerging nanomaterials have exhibited good superiority for these radiation-induced disease treatments. Given this background, the rational design principle of nanomaterials, which helps to optimize the therapeutic efficiency, has been an increasing need. Consequently, it is of great significance to perform a systematic summarization of the advances in this field, which can trigger the development of new high-performance nanoradioprotectors with drug efficiency maximization. Herein, this review highlights the advances and perspectives in the rational design of nanomaterials for preventing and treating various common radiation-induced diseases. Furthermore, the sources, clinical symptoms, and pathogenesis/injury mechanisms of these radiation-induced diseases will also be introduced. Furthermore, current challenges and directions for future efforts in this field are also discussed.
Collapse
Affiliation(s)
- Jiani Xie
- School of Food and Biological Engineering Chengdu University Chengdu 610106 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu 610041 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
13
|
Camini FC, Costa DC. Silymarin: not just another antioxidant. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.2020.31.issue-4/jbcpp-2019-0206/jbcpp-2019-0206.xml. [PMID: 32134732 DOI: 10.1515/jbcpp-2019-0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Silymarin (Silybum marianum; SM), popularly known as milk thistle, is an extract that has been used for many centuries to treat liver diseases. In recent years, several studies have shown that SM is not only just another antioxidant but also a multifunctional compound that exhibits several beneficial properties for use in the treatment and prevention of different types of pathologies and disorders. This review aims at demonstrating the main protective activities of SM in diseases, such as cancer, diabetes, hepatitis, non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C virus, hepatitis B virus, metabolic syndrome, depression, cardiovascular diseases and thalassemia, in addition to its photoprotective activity in in vitro tests and preclinical studies. Its main functions include antioxidant and anti-inflammatory effects, and it acts as modulator of signaling pathways. It has been suggested that SM presents great multifunctional potential and is capable of achieving promising results in different types of research. However, caution is still needed regarding its indiscriminate use in humans as there are only a few clinical studies relating to the adequate dose and the actual efficacy of this extract in different types of diseases.
Collapse
Affiliation(s)
- Fernanda Caetano Camini
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Morro do Cruzeiro University Campus, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
14
|
Di Costanzo A, Angelico R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019; 24:E2155. [PMID: 31181687 PMCID: PMC6600503 DOI: 10.3390/molecules24112155] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
Silymarin, a mixture of flavonolignan and flavonoid polyphenolic compounds extractable from milk thistle (Silybum marianum) seeds, has anti-oxidant, anti-inflammatory, anti-cancer and anti-viral activities potentially useful in the treatment of several liver disorders, such as chronic liver diseases, cirrhosis and hepatocellular carcinoma. Equally promising are the effects of silymarin in protecting the brain from the inflammatory and oxidative stress effects by which metabolic syndrome contributes to neurodegenerative diseases. However, although clinical trials have proved that silymarin is safe at high doses (>1500 mg/day) in humans, it suffers limiting factors such as low solubility in water (<50 μg/mL), low bioavailability and poor intestinal absorption. To improve its bioavailability and provide a prolonged silymarin release at the site of absorption, the use of nanotechnological strategies appears to be a promising method to potentiate the therapeutic action and promote sustained release of the active herbal extract. The purpose of this study is to review the different nanostructured systems available in literature as delivery strategies to improve the absorption and bioavailability of silymarin.
Collapse
Affiliation(s)
- Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, I-86100 Campobasso, Italy.
| | - Ruggero Angelico
- Department of Agriculture, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy.
| |
Collapse
|
15
|
Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway. Cell Commun Signal 2019; 17:52. [PMID: 31126298 PMCID: PMC6534917 DOI: 10.1186/s12964-019-0360-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies claimed the important role of cold atmospheric plasma (CAP) with nanotechnology in cancer treatments. In this study, silymarin nanoemulsion (SN) was used along with air CAP as therapeutic agent to counter human melanoma. METHODS In this study, we examined the combined treatment of CAP and SN on G-361 human melanoma cells by evaluating cellular toxicity levels, reactive oxygen and nitrogen species (RONS) levels, DNA damage, melanoma-specific markers, apoptosis, caspases and poly ADP-ribose polymerase-1 (PARP-1) levels using flow cytometer. Dual-treatment effects on the epithelial-mesenchymal transition (EMT), Hepatocyte growth factor (HGF/c-MET) pathway, sphere formation and the reversal of EMT were also assessed using western blotting and microscopy respectively. SN and plasma-activated medium (PAM) were applied on tumor growth and body weight and melanoma-specific markers and the mesenchymal markers in the tumor xenograft nude mice model were checked. RESULTS Co-treatment of SN and air CAP increased the cellular toxicity in a time-dependent manner and shows maximum toxicity at 200 nM in 24 h. Intracellular RONS showed significant generation of ROS (< 3 times) and RNS (< 2.5 times) in dual-treated samples compared to control. DNA damage studies were assessed by estimating the level of γ-H2AX (1.8 times), PD-1 (> 2 times) and DNMT and showed damage in G-361 cells. Increase in Caspase 8,9,3/7 (> 1.5 times), PARP level (2.5 times) and apoptotic genes level were also observed in dual treated group and hence blocking HGF/c-MET pathway. Decrease in EMT markers (E-cadherin, YKL-40, N-cadherin, SNAI1) were seen with simultaneously decline in melanoma cells (BRAF, NAMPT) and stem cells (CD133, ABCB5) markers. In vivo results showed significant reduction in SN with PAM with reduction in tumor weight and size. CONCLUSIONS The use of air CAP using μ-DBD and the SN can minimize the malignancy effects of melanoma cells by describing HGF/c-MET molecular mechanism of acting on G-361 human melanoma cells and in mice xenografts, possibly leading to suitable targets for innovative anti-melanoma approaches in the future.
Collapse
|
16
|
Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Adv Healthc Mater 2018; 7:e1800421. [PMID: 30019546 DOI: 10.1002/adhm.201800421] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been extensively used in clinic for malignant tumors treatment. However, a severe challenge of it is that the ionizing radiation needed to kill tumors inevitably causes damage to surrounding normal tissues. Although some of the molecular radioprotective drugs, such as amifostine, have been used as clinical adjuvants to radio-protect healthy tissues, their shortcomings such as short systemic circulation time and fast biological clearing from the body largely hinder the sustained bioactivity. Recently, with the rapid development of nanotechnology in the biological field, the multifunctional nanomaterials not only establish powerful drug delivery systems to improve the molecular radioprotective drugs' biological availability, but also open a new route to develop neozoic radioprotective agents because some nanoparticles possess intrinsic radioprotective abilities. Therefore, considering these overwhelming superiorities, this review systematically summarizes the advances in healthy tissue radioprotection applications of multifunctional nanomaterials. Furthermore, this review also points out a perspective of nanomaterial designs for radioprotection applications and discusses the challenges and future outlooks of the nanomaterial-mediated radioprotection.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
17
|
Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103:1018-1027. [DOI: 10.1016/j.biopha.2018.04.126] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
|
18
|
Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:489-495. [PMID: 29232573 DOI: 10.1016/j.jphotobiol.2017.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Free radicals and reactive oxygen species (ROS) are generated using various endogenous systems or from external sources such as exposure to different physiochemicals. Ionizing radiation damage to the cell can be caused by the direct or indirect effects of radiotherapy processes. Silymarin (SM), a flavanolignan compound, has been identified as a natural potent antioxidant with cytoprotection activities due to scavenging free radicals. The aim of the present study was to evaluate the radioprotective effect of SM on sperm parameters of mice induced by γ-rays. A total number of 40 adult, male NMRI mice were randomly divided into four equal groups. The control group was neither treated with SM nor irradiated by γ-rays. The second group was only irradiated with 2Gy of γ-rays. The third group was firstly treated with 50mg/kg of SM for 7 consecutive days, and one day later, last injections were irradiated by 2Gy of γ-rays. The fourth groups received only 50mg/kg of SM for 7 consecutive days. All the animals were treated intraperitoneally. Histopathological and morphometrical examinations were performed. The data were analyzed using ANOVA and Tukey post hoc test. A value of p<0.05 was considered significant. The results showed that in the radiation-only group when compared with those treated with SM and irradiated, a significant different was observed in testicular parameters and DNA damage (p<0.05). In conclusion, SM can be considered as a promising herbal radioprotective agent in complementary medicine which may play an important role to protect normal spermatocytes against possible effects of γ-radiation-induced cellular damage.
Collapse
|
19
|
Ahmad U, Akhtar J, Singh SP, Badruddeen, Ahmad FJ, Siddiqui S, Wahajuddin. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:231-241. [DOI: 10.1080/21691401.2017.1324465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Satya Prakash Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Sahabjada Siddiqui
- Molecular Endocrinology Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Wahajuddin
- Department of Pharmacokinetics, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
20
|
Zhou Z, Huang Y, Liang J, Ou M, Chen J, Li G. Extraction, purification and anti-radiation activity of persimmon tannin from Diospyros kaki L.f. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 162-163:182-188. [PMID: 27267156 DOI: 10.1016/j.jenvrad.2016.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
In this study, persimmon tannin was extracted from Diospyros kaki L.f. using ultrasound-assisted extraction and purified by D101 macroporous resin column chromatography and polysulfone ultrafiltration membrane. The tannin content of the final persimmon tannin extracts was attained to 39.56% calculated as catechin equivalents. Also, the radioprotective effects of persimmon tannin for HEK 293T cells proliferation and apoptosis after Gamma irradiation were investigated by CCK-8, Hoechst 33258 staining, flow cytometry assay and intracellular reactive oxygen species assay (ROS). Persimmon tannin was pre-incubated with HEK 293T cells for 12 h prior to Gamma irradiation. It was found that pretreatment with persimmon tannin increased cell viability and inhibited generation of Gamma-radiation induced ROS in HEK 293T cells exposed to 8 Gy Gamma-radiation. The percentage of apoptotic cells were only 6.7% when the radiation dose was 8 Gy and pretreated with 200 μg/ml of persimmon tannin. All these results indicated that persimmon tannin offered a potent radioprotective effect on cell vitality and cell apoptosis of Gamma-radiation exposure in HEK 293T cells. This study would serve as a pre-clinical evaluation of persimmon tannin for use in people with radiation protection.
Collapse
Affiliation(s)
- Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014, China
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014, China
| | - Minglin Ou
- Guangxi Key Laboratory of Metabolic Disease Research, Guilin 181st Hospital, Guilin, Guangxi 541014, China
| | - Jiejing Chen
- Guangxi Key Laboratory of Metabolic Disease Research, Guilin 181st Hospital, Guilin, Guangxi 541014, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014, China.
| |
Collapse
|
21
|
Comparative Nephroprotective Effects of Silymarin, N-Acetylcysteine, and Thymoquinone Against Carbon Tetrachloride-Induced Nephrotoxicity in Rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.37746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Lal M, Gupta D. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells. Discoveries (Craiova) 2016; 4:e56. [PMID: 32309577 PMCID: PMC6941569 DOI: 10.15190/d.2016.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
Recent reports demonstrated the role of silymarin as a cytoprotective agent for normal cells against ionizing or non-ionizing (UV) radiation, and in inhibiting the chemically initiated or promoted carcinogenesis in several malignancies, such as skin or prostate cancers. Silymarin is a plant flavonoid obtained from milk thistle; the main active principles in milk thistle are silybin (silibinin), sylichrisitin and silydianin, commonly referred as silymarin. In the present study, we aimed to investigate the radiation modulatory effects of silymarin on cancer cells. For this, we used the HCT-15 and RKO colon cancer cell lines as a model. Pre-irradiation treatment of cells with silymarin (20 mg/ml) followed by radiation exposure inhibits colon cancer cell proliferation and enhances cell death in a time-dependent manner. We have also examined the changes in p53 phosphorylation at Ser15, phosphorylation of p38 and their association with DNA damage. Silymarin was found to reduce proliferation of the human colon carcinoma cells in a concentration and time-dependent manner. Moreover, percentage of cell death was also increased in combined treatment (20µg/ml of silymarin + radiation). Our studies indicate that the combination increases the arrest of cells in G2/M phase of cell cycle, DNA damage-induced decrease in mitochondrial membrane potential (MMP) and a decrease of the reactive oxygen species (ROS) levels, which are associated with an increase in cell death. Altogether, these results suggest that silymarin sensitizes colon cancer cells to radiation, strategy with potential for colon cancer treatment. Noteworthy, since silymarin was previously shown to confer protection against radiation in at least some types of normal tissues, additional studies are needed to further investigate the potential of silymarin in colon cancer therapy when combined with radiation, its potential protective effects on normal tissues and its mechanisms of action.
Collapse
Affiliation(s)
- Mitu Lal
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|