1
|
Chen M, Hei J, Huang Y, Liu X, Huang Y. In vivo safety evaluation method for nanomaterials for cancer therapy. Clin Transl Oncol 2024; 26:2126-2141. [PMID: 38573443 DOI: 10.1007/s12094-024-03466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.
Collapse
Affiliation(s)
- Mengqi Chen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingyi Hei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Castel P, Carcopino X, Robert S, Bonetto R, Cowen D, Orsiere T. [The PIG-A gene as a new biomarker of mutagenesis: proof of concept and technical specifications]. Med Sci (Paris) 2017; 33:432-439. [PMID: 28497740 DOI: 10.1051/medsci/20173304014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene mutations are not directly detected by current genotoxicity assays and most of them need a cell culture step. The whole blood PIG-A assay consists in the detection of the mutation frequency within the PIG-A sentinel gene by identification of glycosyl-phosphatidyl-inositol (GPI-) deficient cells. PIG-A mutated/GPI-deficient cells can be detected by flow cytometry as they no longer express surface fluorescence for GPI-linked markers. The last researches have focused on cell enrichment techniques leading to increased throughput and sensitivity. The results of this new and promising biomarker of mutagenesis, performed in humans or rodents, are now available within 2 hours after blood collection.
Collapse
Affiliation(s)
- Pierre Castel
- Institut Méditerranéen de Biodiversité et d'Écologie (IMBE), équipe Biogénotoxicologie, Santé Humaine et Environnement, Aix-Marseille Université (AMU), CNRS, IRD, Avignon Université, Faculté de Médecine de Marseille, 27, boulevard Jean Moulin, 13005 Marseille, France
| | - Xavier Carcopino
- Institut Méditerranéen de Biodiversité et d'Écologie (IMBE), équipe Biogénotoxicologie, Santé Humaine et Environnement, Aix-Marseille Université (AMU), CNRS, IRD, Avignon Université, Faculté de Médecine de Marseille, 27, boulevard Jean Moulin, 13005 Marseille, France - Département d'obstétrique et de gynécologie, Hôpital Nord, APHM, Aix-Marseille Université (AMU), Marseille, France
| | - Stéphane Robert
- Vascular Research Center of Marseille, Aix-Marseille Université (AMU), UMR Inserm 1076, Faculté de Pharmacie, Marseille, France
| | - Rémi Bonetto
- Département de Radiothérapie, Hôpital Nord, APHM, Aix-Marseille Université (AMU), Marseille, France
| | - Didier Cowen
- Département de Radiothérapie, Hôpital Nord, APHM, Aix-Marseille Université (AMU), Marseille, France
| | - Thierry Orsiere
- Institut Méditerranéen de Biodiversité et d'Écologie (IMBE), équipe Biogénotoxicologie, Santé Humaine et Environnement, Aix-Marseille Université (AMU), CNRS, IRD, Avignon Université, Faculté de Médecine de Marseille, 27, boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
3
|
Kimoto T, Horibata K, Miura D, Chikura S, Okada Y, Ukai A, Itoh S, Nakayama S, Sanada H, Koyama N, Muto S, Uno Y, Yamamoto M, Suzuki Y, Fukuda T, Goto K, Wada K, Kyoya T, Shigano M, Takasawa H, Hamada S, Adachi H, Uematsu Y, Tsutsumi E, Hori H, Kikuzuki R, Ogiwara Y, Yoshida I, Maeda A, Narumi K, Fujiishi Y, Morita T, Yamada M, Honma M. The PIGRET assay, a method for measuring Pig-a gene mutation in reticulocytes, is reliable as a short-term in vivo genotoxicity test: Summary of the MMS/JEMS-collaborative study across 16 laboratories using 24 chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:3-15. [DOI: 10.1016/j.mrgentox.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|