1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Rostoka E, Shvirksts K, Salna E, Trapina I, Fedulovs A, Grube M, Sokolovska J. Prediction of type 1 diabetes with machine learning algorithms based on FTIR spectral data in peripheral blood mononuclear cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4926-4937. [PMID: 37721124 DOI: 10.1039/d3ay01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The incidence of autoimmunity is increasing, to ensure timely and comprehensive treatment, there must be a diagnostic method or markers that would be available to the general public. Fourier-transform infrared spectroscopy (FTIR) is a relatively inexpensive and accurate method for determining metabolic fingerprint. The metabolism, molecular composition and function of blood cells vary according to individual physiological and pathological conditions. Thus, by obtaining autoimmune disease-specific metabolic fingerprint markers in peripheral blood mononuclear cells (PBMC) and subsequently using machine learning algorithms, it might be possible to create a tool that will allow the diagnosis of autoimmune diseases. In this preliminary study, it was found that the peak shift at 1545 cm-1 could be considered specific for autoimmune disease type 1 diabetes (T1D), while the shifts at 1070 and 1417 cm-1 could be more attributed to the autoimmune condition per se. The prediction of T1D, despite the small number of participants in the study, showed an inverse AUC = 0.33 ± 0.096, n = 15, indicating a stable trend in the prediction of T1D based on FTIR metabolic fingerprint data in the PBMC.
Collapse
Affiliation(s)
- Evita Rostoka
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | - Edgars Salna
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Ilva Trapina
- Institute of Biology, University of Latvia, Jelgavas iela 1, LV1004 Riga, Latvia
| | - Aleksejs Fedulovs
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | | |
Collapse
|
3
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Alsaleh NB, Alasmari AF, Al-Hamamah MA, Alanazi A, Alshamrani AA, Bakheet SA, Harisa GI. The small molecule Erk1/2 signaling pathway inhibitor PD98059 improves DNA repair in an experimental autoimmune encephalomyelitis SJL/J mouse model of multiple sclerosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503650. [PMID: 37491119 DOI: 10.1016/j.mrgentox.2023.503650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder in which the myelin sheath covering the central nervous system axons is damaged or lost, disrupting action potential conduction and leading to various neurological complications. The pathogenesis of MS remains unclear, and no effective therapies are currently available. MS is triggered by environmental factors in genetically susceptible individuals. DNA damage and DNA repair failure have been proposed as MS genetic risk factors; however, inconsistent evidence has been found in multiple studies. Therefore, more investigations are needed to ascertain whether DNA damage/repair is altered in this disorder. In this context, therapies that prevent DNA damage or enhance DNA repair could be effective strategies for MS treatment. The overactivation of the extracellular-signal-related kinase 1 and 2 (Erk1/2) pathway can lead to DNA damage and has been linked to MS pathogenesis. In our study, we observed substantially elevated oxidative DNA damage and slower DNA repair rates in an experimentally autoimmune encephalomyelitis animal model of MS (EAE). Moreover, statistical decreases in oxidative DNA strand breaks and faster repair rates were observed in EAE animals injected with the Erk1/2 inhibitor PD98059 (PD). Moreover, the expression of several genes associated with DNA strand breaks and repair changed in EAE mice at both the mRNA and protein levels, as revealed by the RT2 Profiler PCR array and verified by RT-PCR and protein analyses. The treatment with PD mitigated these changes and improved DNA repair gene expression. Our results demonstrate clear associations between Erk1/2 activation, DNA damage/repair, and MS pathology, and further suggest that PD therapy may be a promising adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - S F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - N B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - M A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - A A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - S A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - G I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Vlachogiannis NI, Ntouros PA, Pappa M, Kravvariti E, Kostaki EG, Fragoulis GE, Papanikolaou C, Mavroeidi D, Bournia VK, Panopoulos S, Laskari K, Arida A, Gorgoulis VG, Tektonidou MG, Paraskevis D, Sfikakis PP, Souliotis VL. Chronological Age and DNA Damage Accumulation in Blood Mononuclear Cells: A Linear Association in Healthy Humans after 50 Years of Age. Int J Mol Sci 2023; 24:ijms24087148. [PMID: 37108309 PMCID: PMC10138488 DOI: 10.3390/ijms24087148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (rs = 0.41, p = 0.11), a linear relationship was observed after 50 years (r = 0.95, p < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all p < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Evrydiki Kravvariti
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Postgraduate Medical Studies in Geriatric Syndromes and Physiology of Aging, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Georgios E Fragoulis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| | - Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Stylianos Panopoulos
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Katerina Laskari
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Aikaterini Arida
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, National Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Postgraduate Medical Studies in Geriatric Syndromes and Physiology of Aging, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
5
|
Borisovs V, Bodrenko J, Kalnina J, Sjakste N. Nitrosative stress parameters and the level of oxidized DNA bases in patients with multiple sclerosis. Metab Brain Dis 2021; 36:1935-1941. [PMID: 34417942 DOI: 10.1007/s11011-021-00786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with various factors affecting its etiology. Overproduction of nitric oxide and subsequent lesions of biopolymers are some of the possible causes of the disease. This study aimed to measure the most relevant nitrosative and oxidative stress biomarkers and the level of modified DNA bases in patients with MS. Each parameter was assayed in 25 patients with MS and 25 healthy controls. This study involved detecting blood plasma and serum nitric oxide metabolites by chemiluminescence detector Sievers NOA-280i, malondialdehyde (MDA) measurements with thiobarbituric acid reactive substance (TBARS) assay, detection of oxidized purines and pyrimidines with the enzyme-modified comet assay. Statistical analysis of the results was performed by one-way analysis of variance (ANOVA) and unpaired t test for the comparison of less than three data sets. DNA single-strand breaks, levels of modified purines and pyrimidines, as well as nitrite and nitrate levels in plasma and serum samples, were significantly higher in patients with MS than in healthy controls. On the contrary, MDA levels appeared to be lower in patients with MS.
Collapse
Affiliation(s)
- Vitalijs Borisovs
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia.
| | - Jevgenijs Bodrenko
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia
| | - Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, Academic Centre for Natural Sciences, University of Latvia, Jelgavas Str. 1, Riga, LV1004, Latvia
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, Latvia
| |
Collapse
|
6
|
Bonassi S, Ceppi M, Møller P, Azqueta A, Milić M, Neri M, Brunborg G, Godschalk R, Koppen G, Langie SAS, Teixeira JP, Bruzzone M, Da Silva J, Benedetti D, Cavallo D, Ursini CL, Giovannelli L, Moretti S, Riso P, Del Bo' C, Russo P, Dobrzyńska M, Goroshinskaya IA, Surikova EI, Staruchova M, Barančokova M, Volkovova K, Kažimirova A, Smolkova B, Laffon B, Valdiglesias V, Pastor S, Marcos R, Hernández A, Gajski G, Spremo-Potparević B, Živković L, Boutet-Robinet E, Perdry H, Lebailly P, Perez CL, Basaran N, Nemeth Z, Safar A, Dusinska M, Collins A. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci Rep 2021; 11:16793. [PMID: 34408182 PMCID: PMC8373872 DOI: 10.1038/s41598-021-95976-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
The comet assay or single cell gel electrophoresis, is the most common method used to measure strand breaks and a variety of other DNA lesions in human populations. To estimate the risk of overall mortality, mortality by cause, and cancer incidence associated to DNA damage, a cohort of 2,403 healthy individuals (25,978 person-years) screened in 16 laboratories using the comet assay between 1996 and 2016 was followed-up. Kaplan–Meier analysis indicated a worse overall survival in the medium and high tertile of DNA damage (p < 0.001). The effect of DNA damage on survival was modelled according to Cox proportional hazard regression model. The adjusted hazard ratio (HR) was 1.42 (1.06–1.90) for overall mortality, and 1.94 (1.04–3.59) for diseases of the circulatory system in subjects with the highest tertile of DNA damage. The findings of this study provide epidemiological evidence encouraging the implementation of the comet assay in preventive strategies for non-communicable diseases.
Collapse
Affiliation(s)
- Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy. .,Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy.
| | - Marcello Ceppi
- Clinical Epidemiology Unit, San Martino Policlinic Hospital, Genoa, Italy
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Oster Farimagsgade 5A, 1014, Copenhagen, Denmark
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain.,C/Irunlarrea 3, IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Gunnar Brunborg
- Department of Environmental Health, Section of Molecular Toxicology, Norwegian Institute of Public Health (NIPH), Lovisenberggt 6, 0456, Oslo, Norway
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - Gudrun Koppen
- Flemish Institute of Technological Research, Environmental Risk and Health Unit VITO - BIOMo, Mol, Belgium
| | - Sabine A S Langie
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal.,Environmental Health Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal.,EPIUnit - Instituto de Saúde Pública, Universidade Do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal
| | - Marco Bruzzone
- Clinical Epidemiology Unit, San Martino Policlinic Hospital, Genoa, Italy
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), and La Salle University (UNILASALLE), Canoas, RS, Brazil
| | - Danieli Benedetti
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), and La Salle University (UNILASALLE), Canoas, RS, Brazil
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene (DiMEILA), Italian Workers' Compensation Authority (INAIL), Via Fontana Candida 1, 00078, Monte Porzio Catone (Rome), Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene (DiMEILA), Italian Workers' Compensation Authority (INAIL), Via Fontana Candida 1, 00078, Monte Porzio Catone (Rome), Italy
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Silvia Moretti
- Department of Health Sciences, Division of Dermatology, University of Florence, Palagi Hospital, Viale Michelangelo 41, Florence, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Patrizia Russo
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Malgorzata Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health NIH - National Research Institute, 24 Chocimska Street, 00-791, Warsaw, Poland
| | - Irina A Goroshinskaya
- Laboratory for the Study of the Pathogenesis of Malignant Tumors, National Medical Research Center for Oncology, 14 line 63, 344037, Rostov-on-Don, Russia
| | - Ekaterina I Surikova
- Laboratory for the Study of the Pathogenesis of Malignant Tumors, National Medical Research Center for Oncology, 14 line 63, 344037, Rostov-on-Don, Russia
| | - Marta Staruchova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Magdalena Barančokova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Katarina Volkovova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Alena Kažimirova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia
| | - Blanca Laffon
- Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de La Educación, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain.,Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071, A Coruña, Spain
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071, A Coruña, Spain.,Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071, A Coruña, Spain
| | - Susana Pastor
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029, Madrid, Spain
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029, Madrid, Spain
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Biljana Spremo-Potparević
- Center of Biological Research, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, Belgrade, Serbia
| | - Lada Živković
- Center of Biological Research, Faculty of Pharmacy, University of Belgrade, VojvodeStepe 450, Belgrade, Serbia
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Pierre Lebailly
- ANTICIPE Unit, INSERM & University of Caen-Normandie Centre François Baclesse, Avenue du Général Harris, 14076, Caen Cedex 05, France
| | - Carlos L Perez
- Department of Biochemistry, Instituto de Ciencias Básicas Y Preclínicas "Victoria de Giron", Universidad de Ciencias Médicas de La Habana, 146 St. and 31 Ave, No, 3102, Playa, Habana, Cuba
| | - Nursen Basaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Zsuzsanna Nemeth
- Department of Non-Ionizing Radiation, National Public Health Center, Anna Street 5, 1221, Budapest, Hungary
| | - Anna Safar
- Department of Non-Ionizing Radiation, National Public Health Center, Anna Street 5, 1221, Budapest, Hungary
| | | | - Andrew Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | | |
Collapse
|
7
|
Rostoka E, Salna I, Dekante A, Pahirko L, Borisovs V, Celma L, Valeinis J, Sjakste N, Sokolovska J. DNA damage in leukocytes and serum nitrite concentration are negatively associated in type 1 diabetes. Mutagenesis 2021; 36:213-222. [PMID: 34008029 DOI: 10.1093/mutage/geab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022] Open
Abstract
Chronic hyperglycaemia leads to DNA damage in diabetes and might be associated with nitrosative stress. In this study, we aimed at assessing the level of DNA strand breaks in leukocytes, serum nitrite and nitrate in patients with type 1 diabetes and healthy controls and associations of these parameters with diabetes-related outcomes in a prospective study. The level of DNA damage was determined in 71 patients with type 1 diabetes and 57 healthy controls by comet assay and scored with arbitrary units (AU). The chemiluminescence method was used to measure nitrite and nitrate. Clinical information and data on consumption of alcohol, physical activity and smoking were collected. Progression of complications in patients with diabetes was assessed after a follow-up time of 4-5 years. We observed a higher level of DNA damage in leukocytes of patients with type 1 diabetes compared with healthy subjects [type 1 diabetes AU 50 (36-74.5); control AU 30 (24.1-43), P < 0.001]. According to regression, type 1 diabetes leads to a 2-fold increase in DNA damage. In the group of type 1 diabetes, DNA damage correlated positively with total cholesterol (R = 0.262, P = 0.028) and negatively with serum glucose level (R = -0.284; P = 0.018) and serum nitrite (R = -0.335; P = 0.008). DNA damage was not significantly associated with HbA1c, diabetes duration, complications and lifestyle factors. However, DNA damage > 57 AU was associated with statistically significantly lower serum nitrite and 1.52 higher risk of progression of complications of diabetes over the follow-up period. The latter result was not statistically significant due to insufficient study power [relative risk 1.52 (95% confidence interval = 0.68, 3.42, P = 0.31)]. Our results confirm that type 1 diabetes is associated with a higher level of DNA strand breaks in leukocytes when compared with the reference group and demonstrate the negative association between DNA damage and serum nitrite concentration.
Collapse
Affiliation(s)
- Evita Rostoka
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | - Ilze Salna
- Residency Development Program, University of Latvia, Aspazijas Bvd. 5, LV1050 Riga, Latvia
| | - Alise Dekante
- Residency Development Program, University of Latvia, Aspazijas Bvd. 5, LV1050 Riga, Latvia
| | - Leonora Pahirko
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | - Vitalijs Borisovs
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | - Laura Celma
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | - Jānis Valeinis
- Faculty of Physics, Mathematics and Optometry, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | - Nikolajs Sjakste
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV1004 Riga, Latvia
| | | |
Collapse
|
8
|
Onmaz DE, Isık SMT, Abusoglu S, Ekmekci AH, Sivrikaya A, Abusoglu G, Ozturk S, Aydemir HY, Unlu A. Serum ADMA levels were positively correlated with EDSS scores in patients with multiple sclerosis. J Neuroimmunol 2021; 353:577497. [PMID: 33549941 DOI: 10.1016/j.jneuroim.2021.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an autoinflammatory, chronic central nervous system disease. In the pathogenesis of the disease increased nitric oxide (NO) levels play an important role. Nitric oxide (NO) has neuroprotective effects in physiological conditions, however, it is thought that excessive NO formation in MS may lead to demyelination and axonal damage. Derivatives of methylarginine including asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA), symmetric dimethyl arginine (SDMA) directly or indirectly reduce NO production. Our aim was to measure the levels of methylarginine derivatives and citrulline, ornithine, arginine, homoarginine levels, which are metabolites associated with NO metabolism, in MS subgroups.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey.
| | | | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
9
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Harisa GI, Al-Hamamah MA, Mahmoud MA, Bakheet SA. The MAP kinase inhibitor PD98059 reduces chromosomal instability in the autoimmune encephalomyelitis SJL/J-mouse model of multiple sclerosis. Mutat Res 2020; 861-862:503278. [PMID: 33551096 DOI: 10.1016/j.mrgentox.2020.503278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS), a disease in which the immune system attacks nerve cells, has been associated with both genetic and environmental risk factors. We observed increased micronucleus (MN) formation in SJL/J mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Most of these MN were due to chromosomal loss. Increased activation of MAP kinases, which leads to disruption of the mitotic spindle and improper segregation of chromosomes, is associated with MS. MAP kinase inhibitors, such as PD98059, may therefore be beneficial for MS. In the EAE model, PD98059 treatment reduced adverse effects, including MN formation, lipid peroxidation, and GSH oxidation. Interventions that mitigate chromosomal instability may have therapeutic value in MS.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, Saudi Arabia.
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, Saudi Arabia
| | | | | | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
10
|
Agúndez JAG, García-Martín E, Rodríguez C, Benito-León J, Millán-Pascual J, Díaz-Sánchez M, Calleja P, Turpín-Fenoll L, Alonso-Navarro H, García-Albea E, Plaza-Nieto JF, Jiménez-Jiménez FJ. Endothelial nitric oxide synthase (NOS3) rs2070744 polymorphism and risk for multiple sclerosis. J Neural Transm (Vienna) 2020; 127:1167-1175. [PMID: 32449012 DOI: 10.1007/s00702-020-02211-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022]
Abstract
The possible role of oxidative stress and nitric oxide (NO) in the pathogenesis of multiple sclerosis (MS) has been suggested by several neuropathological, biochemical, and experimental data. Because the single-nucleotide polymorphism (SNP) rs2070744 in the endothelial nitric oxide synthase (eNOS or NOS3) gene (chromosome 7q36.1) showed association with the risk for MS in Iranians, we attempted to replicate the possible association between this SNP and the risk for MS in the Caucasian Spanish population. The frequencies of NOS3rs2070744 genotypes and allelic variants in 300 patients diagnosed with MS and 380 healthy controls were assessed with a TaqMan-based qPCR assay. The possible influence of the genotype frequency on age at onset of MS, the severity of MS, clinical evolutive subtypes of MS, and HLA-DRB1*1501 genotype were also analyzed. The frequencies of rs2070744 genotypes and allelic variants were not associated with the risk of developing MS and were not influenced by gender, age at onset and severity of MS, the clinical subtype of MS or the HLA-DRB1*1501 genotype. This study found a lack of association between NOS3 rs2070744 SNP and the risk for MS in Caucasian Spanish people.
Collapse
Affiliation(s)
- José A G Agúndez
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Elena García-Martín
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Christopher Rodríguez
- UNEx, ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - Julián Benito-León
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Jorge Millán-Pascual
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - María Díaz-Sánchez
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Patricia Calleja
- Service of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Laura Turpín-Fenoll
- Section of Neurology, Hospital La Mancha-Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain
| | - Esteban García-Albea
- Department of Medicine-Neurology, Hospital "Príncipe de Asturias", Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - José Francisco Plaza-Nieto
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain
| | - Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, C/ Marroquina 14, 3º B, Arganda del Rey, 28030, Madrid, Spain. .,Department of Medicine-Neurology, Hospital "Príncipe de Asturias", Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
11
|
Sokolovska J, Dekante A, Baumane L, Pahirko L, Valeinis J, Dislere K, Rovite V, Pirags V, Sjakste N. Nitric oxide metabolism is impaired by type 1 diabetes and diabetic nephropathy. Biomed Rep 2020; 12:251-258. [PMID: 32257188 DOI: 10.3892/br.2020.1288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes leads to reduced nitric oxide bioavailability, resulting in endothelial dysfunction. However, overproduction of nitric oxide due to hyperglycaemia is associated with oxidative stress and tissue damage. The objective of this study was to characterise nitric oxide production (NO) and added nitrite and nitrate (NO2 -+NO3 -) concentration in the blood and urine of patients with and without diabetic nephropathy. A total of 268 patients with type 1 diabetes and 69 healthy subjects were included. Diabetic nephropathy was defined as macroalbuminuria and/or estimated glomerular filtration rate below 60 ml/min/1.73 cm2. NO2 -+NO3 - concentration was measured by Griess reaction. Production of NO was detected by electron paramagnetic resonance spectroscopy. Blood NO was demonstrated to be higher (P<0.001) and serum NO2 -+NO3 - was lower (P=0.003) in patients with type 1 diabetes and no nephropathy vs. healthy subjects. However, serum NO2 -+NO3 - concentration in patients with diabetes and nephropathy did not differ from the levels observed in healthy controls. Urine excretion of NO2 -+NO3 - was significantly decreased in patients with nephropathy, compared with patients without diabetic kidney disease (P=0.006) and healthy subjects (P=0.010). A significant positive correlation was observed between urine NO2 -+NO3 - and estimated glomerular filtration rate in patients with type 1 diabetes (P=0.002) and healthy subjects (P=0.008). Estimated glomerular filtration rate, albuminuria and diabetic nephropathy status were significant predictors of the whole blood NO and NO2 -+NO3 - in serum and urine in patients with type 1 diabetes, as identified by linear regression models. The present study concludes that NO metabolism is impaired by type 1 diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Jelizaveta Sokolovska
- Laboratory for Personalized Medicine, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Alise Dekante
- Laboratory for Personalized Medicine, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia.,Internal Medicine Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Larisa Baumane
- Biochemistry Team, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Leonora Pahirko
- Laboratory for Statistics Research and Data Analysis, Faculty of Physics, Mathematics and Optometry, University of Latvia, LV-1004 Riga, Latvia
| | - Janis Valeinis
- Laboratory for Statistics Research and Data Analysis, Faculty of Physics, Mathematics and Optometry, University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Dislere
- Laboratory of Genomics and Bioinformatics, Institute of Biology, University of Latvia, LV-1004 Riga, Latvia
| | - Vita Rovite
- Database of Latvian Population, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Valdis Pirags
- Laboratory for Personalized Medicine, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia.,Internal Medicine Clinic, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia.,Database of Latvian Population, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|