1
|
Lv J, Zhao X, Zhao L, Gong C, Zheng W, Guo L, Wang J, Liang T. The Notable Role of Telomere Length Maintenance in Complex Diseases. Biomedicines 2024; 12:2611. [PMID: 39595175 PMCID: PMC11592153 DOI: 10.3390/biomedicines12112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Telomere length function serves as a critical biomarker for biological aging and overall health. Its maintenance is linked to cancer, neurodegenerative conditions, and reproductive health. This review mainly examines genetic variations and environmental influences on telomere dynamics, highlighting key regulatory genes and mechanisms. Advances in telomere measurement methodologies are also reviewed, underscoring the importance of precise telomere assessment for disease prevention and treatment. Telomerase activation offers potential for cellular lifespan extension and anti-aging effects, whereas its inhibition emerges as a promising therapeutic approach for cancer. Regulatory mechanisms of tumor suppressor genes on telomerase activity are analyzed, with a comprehensive overview of the current state and future potential of telomerase inhibitors. In addition, the association between telomeres and neurodegenerative diseases is discussed, detailing how telomere attrition heightens disease risk and outlining multiple pathways by which telomerase protects neurons from damage and apoptosis.
Collapse
Affiliation(s)
- Jiahui Lv
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Chengjun Gong
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Wanjie Zheng
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Jun Wang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (X.Z.); (L.Z.); (C.G.); (W.Z.); (L.G.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Fabiani R, Chiavarini M, Rosignoli P, Giacchetta I. Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers (Basel) 2024; 16:3218. [PMID: 39335189 PMCID: PMC11430440 DOI: 10.3390/cancers16183218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Although numerous epidemiological studies are available, the relationship between leukocyte telomere length (LTL) and lung cancer risk is still controversial. This systematic review and meta-analysis, performed according to the PRISMA statement and MOOSE guidelines, aims to summarize the evidence and calculate the risk of lung cancer associated with LTL. The literature search was performed on PubMed, Web of Science, and Scopus databases through May 2024. A random-effects model was used to calculate the pooled risk. Heterogeneity was assessed using I2 and Cochran's Q statistic. Begg's and Egger's tests were used to detect publication bias. Based on 8055 lung cancer cases and 854,653 controls (nine prospective studies), longer LTL was associated with a significant 42% increment in all types of lung cancer risk (OR 1.42, 95% CI 1.24-1.63). The effect was even more evident for adenocarcinomas (OR 1.98, 95% CI 1.69-2.31), while no association was observed for squamous cell carcinoma (OR 0.87, 95% CI 0.72-1.06). Significantly, no association was found for current smokers (OR 1.08, 95% CI 0.90-1.30), while it remained high for both never-smokers (OR 1.92, 95% CI 1.62-2.28) and former smokers (OR 1.34, 95% CI 1.11-1.62). No significant publication bias was evidenced. Longer LTL is associated with an increment in lung cancer risk particularly in never-smoker subjects.
Collapse
Affiliation(s)
- Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Manuela Chiavarini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Irene Giacchetta
- Local Health Unit of Bologna, Department of Hospital Network, Hospital Management of Maggiore and Bellaria, 40124 Bologna, Italy;
| |
Collapse
|
3
|
Ramos Jesus F, Correia Passos F, Miranda Lopes Falcão M, Vincenzo Sarno Filho M, Neves da Silva IL, Santiago Moraes AC, Lima Costa Neves MC, Baccan GC. Immunosenescence and Inflammation in Chronic Obstructive Pulmonary Disease: A Systematic Review. J Clin Med 2024; 13:3449. [PMID: 38929978 PMCID: PMC11205253 DOI: 10.3390/jcm13123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Chronic Obstructive Pulmonary Disease (COPD) is a disease of premature aging, characterized by airflow limitations in the lungs and systemic chronic inflammation. This systematic review aimed to provide a systematic overview of immunosenescence and inflammation in Chronic Obstructive Pulmonary Disease (COPD). Methods: The PubMed, Science Direct, Scopus, Cochrane Library, and Web of Science databases were searched for studies on markers of immunosenescence. Observational studies comparing patients with COPD to individuals without disease were evaluated, considering the following markers: inflammation and senescence in COPD, naïve, memory, and CD28null T cells, and telomere length in leukocytes. Results: A total of 15 studies were included, eight of which were rated as high quality. IL-6 production, telomere shortening, and the higher frequencies of CD28null T cells were more prominent findings in the COPD studies analyzed. Despite lung function severity being commonly investigated in the included studies, the importance of this clinical marker to immunosenescence remains inconclusive. Conclusions: The findings of this systematic review confirmed the presence of accelerated immunosenescence, in addition to systemic inflammation, in stable COPD patients. Further studies are necessary to more comprehensively evaluate the impact of immunosenescence on lung function in COPD.
Collapse
Affiliation(s)
- Fabíola Ramos Jesus
- Maternidade Climério de Oliveira (MCO/EBSERH), Universidade Federal da Bahia, Salvador 40055-150, Bahia, Brazil;
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Fabine Correia Passos
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Michelle Miranda Lopes Falcão
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n—Novo Horizonte, Feira de Santana 44036-900, Bahia, Brazil
| | - Marcelo Vincenzo Sarno Filho
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Ingrid Lorena Neves da Silva
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Anna Clara Santiago Moraes
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Margarida Célia Lima Costa Neves
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Gyselle Chrystina Baccan
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| |
Collapse
|
4
|
Chen H, Liang W, Zheng W, Li F, Pan X, Lu Y. A novel telomere-related gene prognostic signature for survival and drug treatment efficiency prediction in lung adenocarcinoma. Aging (Albany NY) 2023; 15:7956-7973. [PMID: 37589509 PMCID: PMC10497012 DOI: 10.18632/aging.204877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Telomere-related genes (TRGs) play a critical role in various types of tumors. However, there is a lack of comprehensive exploration of their relevance in lung cancer. This research aimed to verify the relationship between TRGs gene expression and the prognosis of patients with lung adenocarcinoma (LUAD), as well as the prediction of drug treatment efficiency. METHODS A total of 2093 TRGs were acquired from TelNet. The clinical information including age, tumor stage, follow up and outcome (death/survival) and TRGs expression profile of LUAD were obtained from the patients in The Cancer Genome Atlas (TCGA) database and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. The two databases were used to construct and verify a prognostic model based on the expression of hubTRGs. The tumor mutation burden, immune infiltration and subtypes, as well as IC50 prediction of multiple targeted drugs were also evaluated in TRGs-divided risk groups. RESULTS A total of 335 TRGs were significantly differentially expressed in LUAD as compared with normal control. Among them, 9 TRGs (ABCC2, ABCC8, ALDH2, FOXP3, GNMT, JSRP1, MACF1, PLCD3, SULT4A1) were finally identified as hubGenes and used to construct a TRG risk score. The TRG risk score showed favorable performance in constructing a prognostic nomogram in predicting survival of LUAD, and the ROC curves at 1, 3 and 5 years were plotted and the AUROC values were 0.743, 0.754 and 0.735, respectively. Higher TRGs risk score correlated with worse immune subtypes and higher tumor mutation burden in LUAD tissues. In addition, the patients in TRG high risk group harbored a lower TIDE score which indicated potentially better response to immunotherapy. CONCLUSION This study proposed a broad molecular signature of telomere-related genes that can be used in further functional and therapeutic investigations, and also represents an integrated modality for characterizing critical molecules when exploring novel targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Haiming Chen
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Weiquan Liang
- Department of Respiration, Foshan Second People's Hospital, Foshan, Guangdong Province 528000, China
| | - Weiqiang Zheng
- Department of Respiration, Foshan Second People's Hospital, Foshan, Guangdong Province 528000, China
| | - Feilong Li
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Xingxi Pan
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Yiyu Lu
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| |
Collapse
|
5
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Sha Z, Hou T, Zhou T, Dai Y, Bao Y, Jin Q, Ye J, Lu Y, Wu L. Causal relationship between atrial fibrillation and leukocyte telomere length: A two sample, bidirectional Mendelian randomization study. Front Cardiovasc Med 2023; 10:1093255. [PMID: 36873417 PMCID: PMC9975167 DOI: 10.3389/fcvm.2023.1093255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
Background Atrial fibrillation (AF) is an age-related disease, while telomeres play a central role in aging. But the relationship between AF and telomere length (LTL) is still controversial. This study aims to examine the potential causal association between AF and LTL by using Mendelian randomization (MR). Methods Bidirectional two-sample MR, expression and protein quantitative trait loci (eQTL and pQTL)-based MR were performed using genetic variants from United Kingdom Biobank, FinnGen, and a meta-analysis study, which comprised nearly 1 million participants in the Atrial Fibrillation Study and 470,000 participants in the Telomere Length Study. Apart from the inverse variance weighted (IVW) approach as the main MR analysis, complementary analysis approaches and sensitivity analysis were applied. Results The forward MR revealed a significant causal estimate for the genetically predicted AF with LTL shortening [IVW: odds ratio (OR) = 0.989, p = 0.007; eQTL-IVW: OR = 0.988, p = 0.005; pQTL-IVW: OR = 0.975, p < 0.005]. But in the reverse MR analysis, genetically predicted LTL has no significant correlation with AF (IVW: OR = 0.995, p = 0.916; eQTL-IVW: OR = 0.999, p = 0.995; pQTL-IVW: OR = 1.055, p = 0.570). The FinnGen replication data yielded similar findings. Sensitivity analysis ensured the stability of the results. Conclusion The presence of AF leads to LTL shortening rather than the other way around. Aggressive intervention for AF may delay the telomere attrition.
Collapse
Affiliation(s)
- Zimo Sha
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taojie Zhou
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Dai
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Yiming Lu
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur University, Shanghai, China
| | - Liqun Wu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
8
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|