1
|
Yan S, Huang N, Tong Y, Shu Y, Le Q, Ta D, Xu K. Functional Ultrasound Imaging of Cocaine Induced Brain-Wide Neurovascular Response. Neuroimage 2025; 309:121085. [PMID: 39952487 DOI: 10.1016/j.neuroimage.2025.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Extensive studies have reported that cocaine can lead to potent reduction in cerebral blood flow. However, the mechanisms of the cocaine's impact on the neural and vascular system of brain in temporal and spatial aspects remain elusive. Functional ultrasound (fUS) is a novel neurovascular imaging modality acclaimed for its deep penetration, superior spatiotemporal resolution, and high sensitivity to small blood flow dynamics. This study aims to use fUS technique to characterize the regional differences in hemodynamic responses to acute cocaine administration. The CBV responses revealed that the cortex and ventral tegmental area (VTA) were the regions most significantly affected by cocaine. In addition, electroencephalography (EEG) was also utilized to assess the neural activities in the cortex and VTA. In the cortex, the observed CBV changes responded more rapidly to cocaine than local field potential (LFP) activities, indicating that prior to acting on the central nervous system, cocaine may first affect the peripheral nervous system, accelerating heart rate and increasing cardiac output. Both hemodynamic and neural responses showed opposing patterns between cortical and VTA brain regions. Based on these observations, we proposed a two-stage hypothesis to explain acute cocaine's multifaceted impact on the brain. This study underscores the efficacy of fUS as a powerful and sensitive tool for tracking cocaine-induced hemodynamic changes and enhances our understanding of cocaine's effects on the neurovascular system.
Collapse
Affiliation(s)
- Shaoyuan Yan
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Nan Huang
- School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yousheng Shu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dean Ta
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Kailiang Xu
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China.
| |
Collapse
|
2
|
Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, Sombers LA. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum. ACS Chem Neurosci 2017; 8:272-280. [PMID: 27984698 DOI: 10.1021/acschemneuro.6b00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.
Collapse
Affiliation(s)
- Samantha K. Smith
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christie A. Lee
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Matthew E. Dausch
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Brian M. Horman
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Heather B. Patisaul
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Gregory S. McCarty
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
3
|
Abstract
Cocaine constriction of the cerebral vasculature is thought to contribute to the ischemia associated with cocaine use. However, the mechanisms whereby cocaine elicits relevant vasoconstriction remain elusive. Indeed, proposed intra- and intercellular mechanisms based on over 3 decades of ex vivo vascular studies are, for the most part, of questionable relevancy due to the generally low contractile efficacy of cocaine combined with the use of nonresistance-type vessels. Furthermore, the significance attached to mechanisms derived from in vivo animal studies may be limited by the inability to demonstrate cocaine-induced decreased cerebral blood flow, as observed in (awake) humans. Despite these apparent limitations, we surmise that the vasoconstriction relevant to cocaine-induced ischemia is elicited by inhibition of dilator and activation of constrictor pathways because of cocaine action on the neurovascular unit (neuron, astrocyte, and vessel) and on vessels outside the unit. Furthermore, previous cocaine exposure, that is, conditions present in human subjects, downregulates and sensitizes these dilator and constrictor pathways, respectively, thereby enhancing constriction to acute cocaine. Identification of specific intra- and intercellular mechanisms requires investigations in the isolated microvasculature and the neurovascular unit from species chronically exposed to cocaine and in which cocaine decreases cerebral blood flow.
Collapse
|
4
|
Wakabayashi KT, Ren SE, Kiyatkin EA. Methylenedioxypyrovalerone (MDPV) mimics cocaine in its physiological and behavioral effects but induces distinct changes in NAc glucose. Front Neurosci 2015; 9:324. [PMID: 26441499 PMCID: PMC4584974 DOI: 10.3389/fnins.2015.00324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
Methylenedioxypyrovalerone (MDPV) is generally considered to be a more potent cocaine-like psychostimulant, as it shares a similar pharmacological profile with cocaine and induces similar physiological and locomotor responses. Recently, we showed that intravenous cocaine induces rapid rise in nucleus accumbens (NAc) glucose and established its relation to neural activation triggered by the peripheral drug actions. This study was conducted to find out whether MDPV, at a behaviorally equivalent dose, shares a similar pattern of NAc glucose dynamics. Using enzyme-based glucose sensors coupled with amperometery in freely moving rats, we found that MDPV tonically decreases NAc glucose levels, a response that is opposite to what we previously observed with cocaine. By analyzing Skin-Muscle temperature differentials, a valid measure of skin vascular tone, we found that MDPV induces vasoconstriction; a similar effect at the level of cerebral vessels could be responsible for the MDPV-induced decrease in NAc glucose. While cocaine also induced comparable, if not slightly stronger peripheral vasoconstriction, this effect was overpowered by local neural activity-induced vasodilation, resulting in rapid surge in NAc glucose. These results imply that cocaine-users may be more susceptible to addiction than MDPV-users due to the presence of an interoceptive signal (i.e., sensory cue), which may result in earlier and more direct reward detection. Additionally, while health complications arising from acute cocaine use are typically cardiovascular related, MDPV may be more dangerous to the brain due to uncompensated cerebral vasoconstriction.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Suelynn E Ren
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
5
|
Wakabayashi KT, Kiyatkin EA. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine. Front Neurosci 2015; 9:42. [PMID: 25729349 PMCID: PMC4325903 DOI: 10.3389/fnins.2015.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022] Open
Abstract
The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6–8 s; ~50 μM or ~5% of baseline) followed by a larger, more prolonged tonic elevation (~100 μM or 10% of baseline, peak ~15 min). While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine's peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine's action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS Baltimore, MD, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS Baltimore, MD, USA
| |
Collapse
|
6
|
Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity. Neuropharmacology 2013; 84:159-69. [PMID: 23851258 DOI: 10.1016/j.neuropharm.2013.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 06/06/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022]
Abstract
Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
|
7
|
Symonds CS, McKie S, Elliott R, William Deakin JF, Anderson IM. Detection of the acute effects of hydrocortisone in the hippocampus using pharmacological fMRI. Eur Neuropsychopharmacol 2012; 22:867-74. [PMID: 22521875 DOI: 10.1016/j.euroneuro.2012.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/27/2012] [Accepted: 03/24/2012] [Indexed: 01/09/2023]
Abstract
Impaired hippocampal function is believed to be important in the pathogenesis of depression. The hippocampus contains a high concentration of both mineralocorticoid (MR) and glucocorticoid receptors (GR), and the experimental administration of corticosteroids has been reported to mimic memory impairments seen in depression. Using pharmacological functional magnetic resonance imaging (phMRI) we investigated whether hippocampal function is altered after acute administration of hydrocortisone. Changes in BOLD signal following infusion of 100mg hydrocortisone given as a rapid intravenous bolus were measured in 14 healthy volunteers in a within-subject placebo-controlled crossover design. Subsequently, subjects completed an n-back task during an fMRI scan. Hydrocortisone infusion caused a significant, time-dependent increase in fMRI BOLD signal in hippocampus reaching a maximal effect at 11-19min. The n-back task increased BOLD signal in prefrontal and parietal cortical areas and decreased it in the hippocampus. After hydrocortisone the left hippocampal decrease in BOLD signal was attenuated with the magnitude of attenuation correlating with the increase seen after hydrocortisone infusion. No difference in behavioural task performance was observed. The results suggest acute hydrocortisone has rapid direct and modulatory influences on hippocampal function, probably acting through non-genomic GR or MR signalling. Hydrocortisone infusion phMRI may be a useful tool to investigate hippocampal corticosteroid receptor function in depression.
Collapse
Affiliation(s)
- Catherine S Symonds
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
8
|
Perles-Barbacaru TA, Procissi D, Demyanenko AV, Hall FS, Uhl GR, Jacobs RE. Quantitative pharmacologic MRI: mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice. Neuroimage 2010; 55:622-8. [PMID: 21185387 DOI: 10.1016/j.neuroimage.2010.12.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/31/2022] Open
Abstract
The use of pharmacologic MRI (phMRI) in mouse models of brain disorders allows noninvasive in vivo assessment of drug-modulated local cerebral blood volume changes (ΔCBV) as one correlate of neuronal and neurovascular activities. In this report, we employed CBV-weighted phMRI to compare cocaine-modulated neuronal activity in dopamine transporter (DAT) knockout (KO) and wild-type mice. Cocaine acts to block the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT) that clear their respective neurotransmitters from the synapses, helping to terminate cognate neurotransmission. Cocaine consistently reduced CBV, with a similar pattern of regional ΔCBV in brain structures involved in mediating reward in both DAT genotypes. The largest effects (-20% to -30% ΔCBV) were seen in the nucleus accumbens and several cortical regions. Decreasing response amplitudes to cocaine were noted in more posterior components of the cortico-mesolimbic circuit. DAT KO mice had significantly attenuated ΔCBV amplitudes, shortened times to peak response, and reduced response duration in most regions. This study demonstrates that DAT knockout does not abolish the phMRI responses to cocaine, suggesting that adaptations to loss of DAT and/or retained cocaine activity in other monoamine neurotransmitter systems underlie these responses in DAT KO mice.
Collapse
|
9
|
Du C, Tully M, Volkow ND, Schiffer WK, Yu M, Luo Z, Koretsky AP, Benveniste H. Differential effects of anesthetics on cocaine's pharmacokinetic and pharmacodynamic effects in brain. Eur J Neurosci 2009; 30:1565-75. [PMID: 19821842 DOI: 10.1111/j.1460-9568.2009.06931.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most studies of the effect of cocaine on brain activity in laboratory animals are preformed under anesthesia, which could potentially affect the physiological responses to cocaine. Here we assessed the effects of two commonly used anesthetics [alpha-chloralose (alpha-CHLOR) and isofluorane (ISO)] on the effects of acute cocaine (1 mg/kg i.v.) on cerebral blood flow (CBF), cerebral blood volume (CBV), and tissue hemoglobin oxygenation (S(t)O(2)) using optical techniques and cocaine's pharmacokinetics (PK) and binding in the rat brain using (PET) and [(11)C]cocaine. We showed that acute cocaine at a dose abused by cocaine abusers decreased CBF, CBV and S(t)O(2) in rats anesthetized with ISO, whereas it increased these parameters in rats anesthetized with alpha-CHLOR. Importantly, in ISO-anesthetized animals cocaine-induced changes in CBF and S(t)O(2) were coupled, whereas for alpha-CHLOR these measures were uncoupled. Moreover, the clearance of [(11)C]cocaine from the brain was faster for ISO (peak half-clearance 15.8 +/- 2.8 min) than for alpha-CHLOR (27.5 +/- 0.6 min), and the ratio of specific to non-specific binding of [(11)C]cocaine in the brain was higher for ISO- (3.37 +/- 0.32) than for alpha-CHLOR-anesthetized rats (2.24 +/- 0.4). For both anesthetics, cocaine-induced changes in CBF followed the fast uptake of [(11)C]cocaine in the brain (peaking at approximately 2.5-4 min), but only for ISO did the duration of the CBV and S(t)O(2) changes correspond to the rate of [(11)C]cocaine's clearance from the brain. These results demonstrate that anesthetics influence cocaine's hemodynamic and metabolic changes in the brain, and its binding and PK, which highlights the need to better understand the interactions between anesthetics and pharmacological challenges in brain functional imaging studies.
Collapse
Affiliation(s)
- Congwu Du
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sharma HS, Muresanu D, Sharma A, Patnaik R. Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:297-334. [PMID: 19897082 DOI: 10.1016/s0074-7742(09)88011-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Role of cocaine in influencing blood-brain barrier (BBB) function is still unknown. Available evidences suggest that cocaine administration results in acute hyperthermia and alterations in brain serotonin metabolism. Since hyperthermia is capable to induce the breakdown of the BBB either directly or through altered serotonin metabolism, a possibility exists that cocaine may induce neurotoxicity by causing BBB disruption. This hypothesis is discussed in this review largely based on our own laboratory investigations. Our observations in rats demonstrate that cocaine depending on the dose and routes of administration induces profound hyperthermia, increased plasma and brain serotonin levels leading to BBB breakdown and brain edema formation. Furthermore, cocaine was able to enhance cellular stress as seen by upregulation of heat shock protein (HSP 72 kD) expression and resulted in marked neuronal and glial cell damages at the time of the BBB dysfunction. Taken together, these observations are the first to suggest that cocaine-induced BBB disruption is instrumental in precipitating brain pathology. The possible mechanisms of cocaine-induced BBB breakdown and neurotoxicity are discussed.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research & Pain Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | | |
Collapse
|