1
|
Mathew E, Dortch R, Damon B, Ragunathan S, Quarles CC. Repeatability of diffusion kurtosis tensor parameters in muscles of the lower legs. Magn Reson Med 2025; 93:1306-1313. [PMID: 39529224 DOI: 10.1002/mrm.30344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The aim of this study was to provide measurements from and investigate the repeatability of diffusion kurtosis tensor parameters in the muscles of the lower legs. METHODS Test-retest acquisition of a kurtosis tensor sequence was performed in 13 healthy volunteers. Quantitative kurtosis tensor parameters were derived, and repeatability of each parameter was evaluated by muscle group and over the whole muscle through intraclass correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Bland-Altman analysis was also conducted. Differences in parameter values by muscle group were investigated through an analysis of variance. RESULTS Axial kurtosis and radial kurtosis values from the test data were 0.63 ± 0.04 and 0.70 ± 0.05, respectively. Kurtosis tensor parameters from all muscle groups and over the whole muscle had wsCV below 15%. ICC for the parameters from most muscle groups was above 85%, with the lowest ICC over the whole muscle being 88.39%. The medial gastrocnemius and extensor digitorum longus showed highest repeatability. Mean, axial, and radial diffusivity had higher wsCV despite being lower-order terms than kurtosis. CONCLUSION This study sought to examine the repeatability of diffusion kurtosis tensor-derived parameters in the legs and verify that they could potentially be used as longitudinal imaging metrics. wsCV values from test-retest data indicated high repeatability throughout all examined muscle groups. There were minimal differences in kurtosis and diffusivity parameters between muscle groups in this healthy volunteer cohort.
Collapse
Affiliation(s)
- Ethan Mathew
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Richard Dortch
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Bruce Damon
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, Illinois, USA
- Department of Bioengineering, Department of Biomedical and Translational Medical Sciences, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering and Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | - C Chad Quarles
- Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Lee PK, Yoon D, Sandberg JK, Vasanawala SS, Hargreaves BA. Volumetric and multispectral DWI near metallic implants using a non-linear phase Carr-Purcell-Meiboom-Gill diffusion preparation. Magn Reson Med 2022; 87:2650-2666. [PMID: 35014729 DOI: 10.1002/mrm.29153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE DWI near metal implants has not been widely explored due to substantial challenges associated with through-slice and in-plane distortions, the increased encoding requirement of different spectral bins, and limited SNR. There is no widely adopted clinical protocol for DWI near metal since the commonly used EPI trajectory fails completely due to distortion from extreme off-resonance ranging from 2 to 20 kHz. We present a sequence that achieves DWI near metal with moderate b-values (400-500 s/mm2 ) and volumetric coverage in clinically feasible scan times. THEORY AND METHODS Multispectral excitation with Cartesian sampling, view angle tilting, and kz phase encoding reduce in-plane and through-plane off-resonance artifacts, and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo refocusing trains counteract T2* effects. The effect of random phase on the refocusing train is eliminated using a stimulated echo diffusion preparation. Root-flipped Shinnar-Le Roux refocusing pulses permits preparation of a high spectral bandwidth, which improves imaging times by reducing the number of excitations required to cover the desired spectral range. B1 sensitivity is reduced by using an excitation that satisfies the CPMG condition in the preparation. A method for ADC quantification insensitive to background gradients is presented. RESULTS Non-linear phase refocusing pulses reduces the peak B1 by 46% which allows RF bandwidth to be doubled. Simulations and phantom experiments show that a non-linear phase CPMG pulse pair reduces B1 sensitivity. Application in vivo demonstrates complementary contrast to conventional multispectral acquisitions and improved visualization compared to DW-EPI. CONCLUSION Volumetric and multispectral DW imaging near metal can be achieved with a 3D encoded sequence.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA.,Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daehyun Yoon
- Radiology, Stanford University, Stanford, California, USA
| | | | | | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA.,Electrical Engineering, Stanford University, Stanford, California, USA.,Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Stavres J, Wang J, Sica CT, Blaha C, Herr M, Pai S, Cauffman A, Vesek J, Yang QX, Sinoway LI. Diffusion tensor imaging indices of acute muscle damage are augmented after exercise in peripheral arterial disease. Eur J Appl Physiol 2021; 121:2595-2606. [PMID: 34106324 PMCID: PMC10445221 DOI: 10.1007/s00421-021-04711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Jianli Wang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Samuel Pai
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
4
|
Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51:2748-2756. [PMID: 32972725 DOI: 10.1016/j.injury.2020.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade rapid advancements in molecular imaging (MI) and artificial intelligence (AI) have revolutionized traditional musculoskeletal radiology. Molecular imaging refers to the ability of various methods to in vivo characterize and quantify biological processes, at a molecular level. The extracted information provides the tools to understand the pathophysiology of diseases and thus to early detect, to accurately evaluate the extend and to apply and evaluate targeted treatments. At present, molecular imaging mainly involves CT, MRI, radionuclide, US, and optical imaging and has been reported in many clinical and preclinical studies. Although originally MI techniques targeted at central nervous system disorders, later on their value on musculoskeletal disorders was also studied in depth. Meaningful exploitation of the large volume of imaging data generated by molecular and conventional imaging techniques, requires state-of-the-art computational methods that enable rapid handling of large volumes of information. AI allows end-to-end training of computer algorithms to perform tasks encountered in everyday clinical practice including diagnosis, disease severity classification and image optimization. Notably, the development of deep learning algorithms has offered novel methods that enable intelligent processing of large imaging datasets in an attempt to automate decision-making in a wide variety of settings related to musculoskeletal trauma. Current applications of AI include the diagnosis of bone and soft tissue injuries, monitoring of the healing process and prediction of injuries in the professional sports setting. This review presents the current applications of novel MI techniques and methods and the emerging role of AI regarding the diagnosis and evaluation of musculoskeletal trauma.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece.
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Crete, Greece.
| | - Apostolos H Karantanas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| |
Collapse
|
5
|
The repeatability of bilateral diffusion tensor imaging (DTI) in the upper leg muscles of healthy adults. Eur Radiol 2019; 30:1709-1718. [PMID: 31705253 PMCID: PMC7033061 DOI: 10.1007/s00330-019-06403-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Objectives Assessment of the repeatability of diffusion parameter estimations in the upper leg muscles of healthy adults over the time course of 2 weeks, from a simultaneous bilateral upper leg DTI measurement. Methods SE-EPI DTI datasets were acquired at 3 T in the upper legs of 15 active adults at a time interval of 2 weeks. ROIs were manually drawn for four quadriceps and three hamstring muscles of both legs. The following DTI parameters were analyzed: 1st, 2nd, and 3rd eigenvalue (λ1, λ2, and λ3), mean diffusivity (MD), and fractional anisotropy (FA). DTI parameters per muscle were calculated with and without intravoxel incoherent motion (IVIM) correction together with SNR levels per muscle. Bland-Altman plots and within-subject coefficient of variation (wsCV) were calculated. Left-right differences between muscles were assessed. Results The Bland-Altman analysis showed good repeatability of all DTI parameters except FA for both the IVIM-corrected and standard data. wsCV values show that MD has the highest repeatability (4.5% IVIM; 5.6% standard), followed by λ2 (4.9% IVIM; 5.5% standard), λ1 (5.3% IVIM; 7.5% standard), and λ3 (5.7% IVIM; 5.7% standard). wsCV values of FA were 15.2% for the IVIM-corrected data and 13.9% for the standard analysis. The SNR (41.8 ± 16.0 right leg, 41.7 ± 17.1 left leg) and wsCV values were similar for the left and right leg and no left-right bias was detected. Conclusions Repeatability was good for standard DTI data and slightly better for IVIM-corrected DTI data. Our protocol is suitable for DTI of the upper legs with overall good SNR. Key Points • The presented DTI protocol is repeatable and therefore suitable for bilateral DT imaging of the upper legs. • Additional B1+calibrations improve SNR and repeatability. • Correcting for perfusion effects improves repeatability. Electronic supplementary material The online version of this article (10.1007/s00330-019-06403-5) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Sawada E, Kaneda T, Sakai O, Kawashima Y, Ito K, Hirahara N, Iizuka N. Increased Apparent Diffusion Coefficient Values of Masticatory Muscles on Diffusion-Weighted Magnetic Resonance Imaging in Patients With Temporomandibular Joint Disorder and Unilateral Pain. J Oral Maxillofac Surg 2019; 77:2223-2229. [DOI: 10.1016/j.joms.2019.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
|
7
|
Farrow M, Grainger AJ, Tan AL, Buch MH, Emery P, Ridgway JP, Feiweier T, Tanner SF, Biglands J. Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle. Br J Radiol 2019; 92:20190143. [PMID: 31298948 DOI: 10.1259/bjr.20190143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the test-retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. METHODS 29 healthy volunteers (mean age 37 years, range 20-60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test-retest variability of the measurements. RESULTS Intraclass correlation coefficients (ICCs) for test-retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10-3 mm2s-1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. CONCLUSIONS This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. ADVANCES IN KNOWLEDGE Test-retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew J Grainger
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maya H Buch
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Paul Emery
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John P Ridgway
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Steven F Tanner
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John Biglands
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
8
|
Abstract
OBJECTIVE. For many years, MRI of the musculoskeletal system has relied mostly on conventional sequences with qualitative analysis. More recently, using quantitative MRI applications to complement qualitative imaging has gained increasing interest in the MRI community, providing more detailed physiologic or anatomic information. CONCLUSION. In this article, we review the current state of quantitative MRI, technical and software advances, and the most relevant clinical and research musculoskeletal applications of quantitative MRI.
Collapse
|
9
|
Faruch M, Garcia AI, Del Amo M, Pomes J, Isern J, González SP, Grau JM, Milisenda JC, Tomas X. Diffusion‐weighted magnetic resonance imaging is useful for assessing inflammatory myopathies. Muscle Nerve 2019; 59:555-560. [DOI: 10.1002/mus.26438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Marie Faruch
- Radiology Department, CHU Toulouse PurpanPlace du docteur Baylac 31059, Toulouse France
| | - Ana Isabel Garcia
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Montse Del Amo
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Jaume Pomes
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Jaime Isern
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| | - Sergio Prieto González
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - Josep María Grau
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - José César Milisenda
- Muscle Research Unit, Internal Medicine Service, Hospital Clínic de BarcelonaUniversidad de Barcelona and CIBERER Villarroel, 170, 08036, Barcelona Spain
| | - Xavier Tomas
- Muscle Research Unit, Radiology Department. Hospital Clínic de BarcelonaUniversidad de Barcelona Villarroel, 170, 08036, Barcelona Spain
| |
Collapse
|
10
|
McPherson JG, Smith AC, Duben DA, McMahon KL, Wasielewski M, Parrish TB, Elliott JM. Short- and long-term reproducibility of diffusion-weighted magnetic resonance imaging of lower extremity musculature in asymptomatic individuals and a comparison to individuals with spinal cord injury. BMC Musculoskelet Disord 2018; 19:433. [PMID: 30522482 PMCID: PMC6284280 DOI: 10.1186/s12891-018-2361-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background Diffusion-weighted magnetic resonance imaging (DW-MRI) of skeletal muscle has the potential to be a sensitive diagnostic and/or prognostic tool in complex, enigmatic neuromusculoskeletal conditions such as spinal cord injury and whiplash associated disorder. However, the reliability and reproducibility of clinically accessible DW-MRI parameters in skeletal muscle remains incompletely characterized – even in individuals without neuromusculoskeletal injury – and these parameters have yet to be characterized for many clinical populations. Here, we provide normative measures of the apparent diffusion coefficient (ADC) in healthy muscles of the lower limb; assess the rater-based reliability and short- and long-term reproducibility of the ADC in the same muscles; and quantify ADC of these muscles in individuals with motor incomplete spinal cord injury. Methods Twenty individuals without neuromusculoskeletal injury and 14 individuals with motor incomplete spinal cord injury (SCI) participated in this investigation. We acquired bilateral diffusion-weighted MRI of the lower limb musculature in all participants at 3 T using a multi-shot echo-planar imaging sequence with b-values of 0, 100, 300 and 500 s/mm2 and diffusion-probing gradients applied in 3 orthogonal directions. Outcome measures included: (1) average ADC in the lateral and medial gastrocnemius, tibialis anterior, and soleus of individuals without neurological or musculoskeletal injury; (2) intra- and inter-rater reliability, as well as short and long-term reproducibility of the ADC; and (3) estimation of average muscle ADC in individuals with SCI. Results Intra- and inter-rater reliability of the ADC averaged 0.89 and 0.79, respectively, across muscles. Least significant change, a measure of temporal reproducibility, was 4.50 and 11.98% for short (same day) and long (9-month) inter-scan intervals, respectively. Average ADC was significantly elevated across muscles in individuals with SCI compared to individuals without neurological or musculoskeletal injury (1.655 vs. 1.615 mm2/s, respectively). Conclusions These findings provide a foundation for future studies that track longitudinal changes in skeletal muscle ADC of the lower extremity and/or investigate the mechanisms underlying ADC changes in cases of known or suspected pathology.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew C Smith
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,School of Physical Therapy, Regis University, Denver, CO, USA
| | - Daniel A Duben
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Katie L McMahon
- Herston Imaging Research Facility, University of Queensland Centre for Clinical Research, Herston, QLD, Australia.,School of Clinical Sciences, Institute of Health and Biosciences Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie Wasielewski
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia. .,Faculty of Health Sciences, The University of Sydney, Northern Sydney Local Health District, St Leonards, NSW, Australia.
| |
Collapse
|
11
|
Xing S, Freeman CR, Jung S, Turcotte R, Levesque IR. Probabilistic classification of tumour habitats in soft tissue sarcoma. NMR IN BIOMEDICINE 2018; 31:e4000. [PMID: 30113738 DOI: 10.1002/nbm.4000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this work is to propose a method to characterize tumour heterogeneity on MRI, using probabilistic classification based on a reference tissue. The method uses maps of the apparent diffusion coefficient (ADC), T2 relaxation, and a calculated map representing high-b-value diffusion-weighted MRI (denoted simDWI) to identify up to five habitats (i.e. sub-regions) of tumours. In this classification method, the parameter values (ADC, T2 , and simDWI) from each tumour voxel are compared against the corresponding parameter probability distributions in a reference tissue. The probability that a tumour voxel belongs to a specific habitat is the joint probability for all parameters. The classification can be visualized using a custom colour scheme. The proposed method was applied to data from seven patients with biopsy-confirmed soft tissue sarcoma, at three time-points over the course of pre-operative radiotherapy. Fast-spin-echo images with two different echo times and diffusion MRI with three b-values were obtained and used as inputs to the method. Imaging findings were compared with pathology reports from pre-radiotherapy biopsy and post-surgical resection. Regions of hypercellularity, high-T2 proteinaceous fluid, necrosis, collagenous stroma, and fibrosis were identified within soft tissue sarcoma. The classifications were qualitatively consistent with pathological observations. The percentage of necrosis on imaging correlated strongly with necrosis estimated from FDG-PET before radiotherapy (R2 = 0.97) and after radiotherapy (R2 = 0.96). The probabilistic classification method identifies realistic habitats and reflects the complex microenvironment of tumours, as demonstrated in soft tissue sarcoma.
Collapse
Affiliation(s)
- Shu Xing
- Medical Physics Unit, McGill University, Montreal, Canada
- Department of Physics, McGill University, Montreal, Canada
| | - Carolyn R Freeman
- Radiation Oncology, McGill University Health Centre, Montreal, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, Montreal, Canada
| | - Robert Turcotte
- Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montreal, Canada
- Department of Physics, McGill University, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
12
|
Simultaneous Multislice Accelerated Diffusion Tensor Imaging of Thigh Muscles in Myositis. AJR Am J Roentgenol 2018; 211:861-866. [PMID: 30085833 DOI: 10.2214/ajr.17.19318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Yoon MA, Hong SJ, Ku MC, Kang CH, Ahn KS, Kim BH. Multiparametric MR Imaging of Age-related Changes in Healthy Thigh Muscles. Radiology 2018; 287:235-246. [DOI: 10.1148/radiol.2017171316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min A Yoon
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| | - Suk-Joo Hong
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| | - Min Cheol Ku
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| | - Chang Ho Kang
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| | - Kyung-Sik Ahn
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| | - Baek Hyun Kim
- From the Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea (M.A.Y., S.J.H., M.C.K.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (C.H.K., K.S.A.); Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (B.H.K.)
| |
Collapse
|
14
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
15
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
16
|
Schlaffke L, Rehmann R, Froeling M, Kley R, Tegenthoff M, Vorgerd M, Schmidt-Wilcke T. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters. J Magn Reson Imaging 2017; 46:1137-1148. [DOI: 10.1002/jmri.25650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Robert Rehmann
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | | | - Rudolf Kley
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Martin Tegenthoff
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Matthias Vorgerd
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology BG-University Hospital Bergmannsheil; Ruhr-University Bochum; Bochum Germany
- St. Mauritius Therapieklinik; Meerbusch Germany
- Institute of Clinical Neuroscience and Medical Psychology; University of Düsseldorf; Düsseldorf Germany
| |
Collapse
|
17
|
Ran J, Liu Y, Sun D, Morelli J, Zhang P, Wu G, Sheng Y, Xie R, Zhang X, Li X. The diagnostic value of biexponential apparent diffusion coefficients in myopathy. J Neurol 2016; 263:1296-302. [PMID: 27142711 DOI: 10.1007/s00415-016-8139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
Abstract
To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs.
Collapse
Affiliation(s)
- Jun Ran
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yao Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Dong Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - John Morelli
- Department of Radiology, St John's Medical Center, Tulsa, OK, USA
| | - Ping Zhang
- Department of Radiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yuda Sheng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Ruyi Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xiaoli Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Melville DM, Mohler J, Fain M, Muchna AE, Krupinski E, Sharma P, Taljanovic MS. Multi-parametric MR imaging of quadriceps musculature in the setting of clinical frailty syndrome. Skeletal Radiol 2016; 45:583-9. [PMID: 26743776 DOI: 10.1007/s00256-015-2313-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Frailty is a common geriatric syndrome associated with loss of skeletal muscle mass (sarcopenia) conferring an increased risk of rapid decline in health and function with increased vulnerability to adverse outcomes. The purpose of this study was to investigate the correlation between diffusion tensor, T2 and intramuscular fat content values of the quadriceps muscle group and clinical frailty status using diffusion tensor MR imaging. MATERIAL AND METHODS Subjects were recruited from the Arizona Frailty cohort composed of all females with frailty status based on the Fried criteria, including 6 non-frail and 10 pre-frail/frail adults, as well as a community sample of 11 young, healthy controls. Axial images of both thighs were obtained on a 3-T magnet with T1, T2 and diffusion tensor imaging as well as intramuscular fat analysis. Diffusion tensor and T2 values were determined by region-of-interest measurements at the proximal, mid and distal thirds of both thighs. Data were evaluated to determine differences between measured values and frailty status. RESULTS The mean fractional anisotropy (FA) values in the bilateral quadriceps muscles demonstrated significant differences (F = 7.558, p = 0.0030) between the control and pre-frail/frail and non-frail and pre-frail/frail groups. There was a significant difference in mean T2 (F = 21.675, p < 0.0001) and lipid content (F = 19.266, p < 0.0001) among all three groups in the total quadriceps muscle group. CONCLUSION The quadriceps musculature of pre-frail/frail adults demonstrated increased FA compared to young controls and non-frail adults with increasing T2 and intramuscular fat among the control, non-frail and pre-frail/frail categories.
Collapse
Affiliation(s)
- David M Melville
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ, 85724, USA.
| | - Jane Mohler
- Arizona Center on Aging, University of Arizona College of Medicine, 1821 E. Elm Street, Tucson, AZ, 85719, USA
| | - Mindy Fain
- Arizona Center on Aging, University of Arizona College of Medicine, 1821 E. Elm Street, Tucson, AZ, 85719, USA
| | - Amy E Muchna
- Arizona Center on Aging, University of Arizona College of Medicine, 1821 E. Elm Street, Tucson, AZ, 85719, USA
| | - Elizabeth Krupinski
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ, 85724, USA.,Department of Radiology & Imaging Services, Emory University, 1364 Clifton Rd NE, Atlanta, GA, 30322, USA
| | - Puneet Sharma
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ, 85724, USA
| | - Mihra S Taljanovic
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., P.O. Box 245067, Tucson, AZ, 85724, USA
| |
Collapse
|
19
|
Kumar Y, Wadhwa V, Phillips L, Pezeshk P, Chhabra A. MR imaging of skeletal muscle signal alterations: Systematic approach to evaluation. Eur J Radiol 2016; 85:922-35. [PMID: 27130052 DOI: 10.1016/j.ejrad.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/24/2023]
Abstract
Muscle edema or edema-like signal alterations are commonly encountered findings in musculoskeletal magnetic resonance (MR) imaging. Although such signal alterations are very sensitive for detection of the underlying muscle pathology, these are often non-specific findings. Encompassing knowledge of their typical clinical presentations, characteristic appearances and patterns of muscle signal alterations and following a systematic approach towards their assessment, a reader can effectively narrow down the differential diagnosis. This article outlines the role of conventional imaging and advanced anatomic and functional musculoskeletal MR imaging techniques in the evaluation of various muscle disorders and presents a systematic approach towards their diagnosis and management.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Radiology, Yale New Haven Health System at Bridgeport Hospital, CT, United States
| | - Vibhor Wadhwa
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lauren Phillips
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Parham Pezeshk
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
20
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Application of intravoxel incoherent motion perfusion imaging to shoulder muscles after a lift-off test of varying duration. NMR IN BIOMEDICINE 2016; 29:66-73. [PMID: 26684052 DOI: 10.1002/nbm.3449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/06/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Intravoxel incoherent motion (IVIM) MRI is a method to extract microvascular blood flow information out of diffusion-weighted images acquired at multiple b-values. We hypothesized that IVIM can identify the muscles selectively involved in a specific task, by measuring changes in activity-induced local muscular perfusion after exercise. We tested this hypothesis using a widely used clinical maneuver, the lift-off test, which is known to assess specifically the subscapularis muscle functional integrity. Twelve shoulders from six healthy male volunteers were imaged at 3 T, at rest, as well as after a lift-off test hold against resistance for 30 s, 1 and 2 min respectively, in three independent sessions. IVIM parameters, consisting of perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient D* and blood flow-related fD*, were estimated within outlined muscles of the rotator cuff and the deltoid bundles. The mean values at rest and after the lift-off tests were compared in each muscle using a one-way ANOVA. A statistically significant increase in fD* was measured in the subscapularis, after a lift-off test of any duration, as well as in D. A fD* increase was the most marked (30 s, +103%; 1 min, +130%; 2 min, +156%) and was gradual with the duration of the test (in 10(-3) mm(2) /s: rest, 1.41 ± 0.50; 30 s, 2.86 ± 1.17; 1 min, 3.23 ± 1.22; 2 min, 3.60 ± 1.21). A significant increase in fD* and D was also visible in the posterior bundle of the deltoid. No significant change was consistently visible in the other investigated muscles of the rotator cuff and the other bundles of the deltoid. In conclusion, IVIM fD* allows the demonstration of a task-related microvascular perfusion increase after a specific task and suggests a direct relationship between microvascular perfusion and the duration of the effort. It is a promising method to investigate non-invasively skeletal muscle physiology and clinical perfusion-related muscular disorders.
Collapse
Affiliation(s)
- Audrey Nguyen
- Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Joachim Forget
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Christian Federau
- Department of Diagnostic and Interventional Radiology, University Hospital Center and University of Lausanne (CHUV-UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Department of Radiology, Division of Neuroradiology, Stanford University, 300 Pasteur Drive, Room S039, Stanford, CA, 94305-5105, United States
| |
Collapse
|
21
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Hiepe P, Gussew A, Rzanny R, Kurz E, Anders C, Walther M, Scholle HC, Reichenbach JR. Age-related structural and functional changes of low back muscles. Exp Gerontol 2015; 65:23-34. [PMID: 25735850 DOI: 10.1016/j.exger.2015.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 01/15/2023]
Abstract
During aging declining maximum force capacity with more or less unchanged fatigability is observed with the underlying mechanisms still not fully understood. Therefore, we compared morphology and function of skeletal muscles between different age groups. Changes in high-energy phosphate turnover (PCr, Pi and pH) and muscle functional MRI (mfMRI) parameters, including proton transverse relaxation time (T2), diffusion (D) and vascular volume fraction (f), were investigated in moderately exercised low back muscles of young and late-middle-aged healthy subjects with (31)P-MR spectroscopy, T2- and diffusion-weighted MRI at 3T. In addition, T1-weighted MRI data were acquired to determine muscle cross-sectional areas (CSA) and to assess fat infiltration into muscle tissue. Except for pH, both age groups showed similar load-induced MR changes and rates of perceived exertion (RPE), which indicates comparable behavior of muscle activation at moderate loads. Changes of mfMRI parameters were significantly associated with RPE in both cohorts. Age-related differences were observed, with lower pH and higher Pi/ATP ratios as well as lower D and f values in the late-middle-aged subjects. These findings are ascribed to age-related changes of fiber type composition, fiber size and vascularity. Interestingly, post exercise f was negatively associated with fat infiltration with the latter being significantly higher in late-middle-aged subjects. CSA of low back muscles remained unchanged, while CSA of inner back muscle as well as mean T2 at rest were associated with maximum force capacity. Overall, applying the proposed MR approach provides evidence of age-related changes in several muscle tissue characteristics and gives new insights into the physiological processes that take place during aging.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Eduard Kurz
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Christoph Anders
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation (IMSID), Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Hans-Christoph Scholle
- Department for Trauma-, Hand- and Reconstructive Surgery, Division of Motor Research, Pathophysiology and Biomechanics, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| |
Collapse
|
23
|
Sawant A, House AA, Chesworth BM, Connelly DM, Lindsay R, Gati J, Bartha R, Overend TJ. Association between muscle hydration measures acquired using bioelectrical impedance spectroscopy and magnetic resonance imaging in healthy and hemodialysis population. Physiol Rep 2015; 3:e12219. [PMID: 25626863 PMCID: PMC4387764 DOI: 10.14814/phy2.12219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/24/2022] Open
Abstract
Establishing the effect of fluctuating extracellular fluid (ECF) volume on muscle strength in people with end-stage renal disease (ESRD) on hemodialysis (HD) is essential, as inadequate hydration of the skeletal muscles impacts its strength and endurance. Bioelectrical impedance spectroscopy (BIS) has been a widely used method for estimating ECF volume of a limb or calf segment. Magnetic resonance imaging (MRI)-acquired transverse relaxation times (T2) has also been used for estimating ECF volumes of individual skeletal muscles. The purpose of this study was to determine the association between T2 (gold standard) of tibialis anterior (TA), medial (MG), and lateral gastrocnemius (LG), and soleus muscles and calf BIS ECF, in healthy and in people with ESRD/HD. Calf BIS and MRI measures were collected on two occasions before and after HD session in people with ESRD/HD and on a single occasion for the healthy participants. Linear regression analysis was used to establish the association between these measures. Thirty-two healthy and 22 participants on HD were recruited. The association between T2 of TA, LG, MG, and soleus muscles and ratio of calf BIS-acquired ECF and intracellular fluids (ICF) were: TA: β = 0.30, P > 0.05; LG: β = 0.37, P = 0.035; MG: β = 0.43, P = 0.014; soleus: β = 0.60, P < 0.001. For the HD group, calf ECF was significantly associated with T2 of TA (β = 0.44, P = 0.042), and medial gastrocnemius (β = 0.47, P = 0.027) following HD only. Hence BIS-acquired measures cannot be used to measure ECF volumes of a single muscle in the ESRD/HD population; however, BIS could be utilized to estimate ratio of ECF: ICF in healthy population for the LG, MG, and soleus muscles.
Collapse
Affiliation(s)
- Anuradha Sawant
- Western University, London, Ontario, Canada
- London Health Sciences Center, University Hospital Campus, London, Ontario, Canada
| | - Andrew A. House
- Division of Nephrology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Bert M. Chesworth
- Department of Epidemiology and Biostatistics, School of Physical Therapy, Western University, London, Ontario, Canada
| | | | - Robert Lindsay
- Division of Nephrology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Joe Gati
- The Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Robert Bartha
- The Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Tom J. Overend
- School of Physical Therapy, Western University, London, Ontario, Canada
| |
Collapse
|
24
|
Hiepe P, Gussew A, Rzanny R, Anders C, Walther M, Scholle HC, Reichenbach JR. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles. NMR IN BIOMEDICINE 2014; 27:958-970. [PMID: 24953438 DOI: 10.1002/nbm.3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc = 11.8/9.7%; left ES/MF: T2 ,inc = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.
Collapse
Affiliation(s)
- Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Center of Radiology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Mürtz P, Kaschner M, Träber F, Kukuk GM, Büdenbender SM, Skowasch D, Gieseke J, Schild HH, Willinek WA. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0T. Eur J Radiol 2012; 81:3614-23. [DOI: 10.1016/j.ejrad.2011.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
26
|
Fischer MA, Donati OF, Reiner CS, Hunziker R, Nanz D, Boss A. Feasibility of semiquantitative liver perfusion assessment by ferucarbotran bolus injection in double-contrast hepatic MRI. J Magn Reson Imaging 2012; 36:168-76. [PMID: 22334302 DOI: 10.1002/jmri.23611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 01/11/2012] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate the feasibility of semiquantitative measurement of liver perfusion from analysis of ferucarbotran induced signal-dynamics in double-contrast liver MR-imaging (DC-MRI). MATERIALS AND METHODS In total 31 patients (21 men; 58 ± 10 years) including 18 patients with biopsy proven liver cirrhosis prospectively underwent clinically indicated DC-MRI at 1.5 Tesla (T) with dynamic T2-weighted gradient-echo imaging after ferucarbotran bolus injection. Breathing artefacts in tissue and input time curves were reduced by Savitzky-Golay-filtering and semiquantitative perfusion maps were calculated using a model free approach. Hepatic blood flow index (HBFI) and splenic blood flow index (SBFI) were determined by normalization of arbitrary perfusion values to the perfusion of the erector spinae muscle resulting in a semiquantitative perfusion measure. RESULTS In 30 of 31 patients the evaluated protocol could successfully be applied. Mean HBF was 7.7 ± 2.46 (range, 4.6-12.8) and mean SBF was 13.20 ± 2.57 (range, 8.5-17.8). A significantly lower total HBF was seen in patients with cirrhotic livers as compared to patients with noncirrhotic livers (P < 0.05). In contrast, similar SBF was observed in cirrhotic and noncirrhotic patients (P = 0.11). CONCLUSION Capturing the signal dynamics during bolus injection of ferucarbotran in DC-MRI of the liver allows for semiquantitative assessment of hepatic perfusion that may be helpful for a more precise characterisation of liver cirrhosis and focal liver lesions.
Collapse
Affiliation(s)
- Michael A Fischer
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
27
|
Goyault G, Bierry G, Holl N, Lhermitte B, Dietemann JL, Beregi JP, Kremer S. Diffusion-weighted MRI, dynamic susceptibility contrast MRI and ultrasound perfusion quantification of denervated muscle in rabbits. Skeletal Radiol 2012; 41:33-40. [PMID: 21308468 DOI: 10.1007/s00256-011-1108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/16/2010] [Accepted: 01/14/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to assess denervated muscle perfusion using dynamic susceptibility contrast MRI (DSCMRI) and contrast-enhanced ultrasound (CEUS), and to measure denervated muscle apparent diffusion coefficient (ADC) on b1000 diffusion-weighted MRI (DWMRI) at 3 T in order to clarify whether muscle denervation leads to an increase in the extracellular extravascular space, or an increase in blood flow-or both. MATERIALS AND METHODS Axotomy of the right sciatic nerve of six white rabbits was performed at day 0. At day 9, hind limb muscles MRI and CEUS were performed to assess the consequences of denervation and both semimembranosus muscles of each rabbit were explanted for histological studies. Signal intensity on T2- and T1-weighted MRI, ADC on DWMRI, maximum signal drop (MSD) on DSCMRI and the area under the curve (AUC) on CEUS were measured over circular regions of interest (ROI), in both semimembranosus muscles. Non-parametric Wilcoxon matched-pairs tests were used to assess the mean differences between denervated and normal muscles. RESULTS T2 fat-saturated (FS) MRI studies showed a strong signal in the right semimembranosus muscles compared with the left side, and gadolinium enhancement was observed on T1 FS MRI. Denervated muscles show a significant increase in ADC on DWMRI (p < 0.01) and a significant signal enhancement on DSCMR imaging (p < 0.05) and on first-pass CEUS (p < 0.05). CONCLUSION The results of this study--based on perfusion- and diffusion-weighted images--suggest that, after denervation, both increased blood flow through muscle tissue and expansion of the extracellular water volume are present.
Collapse
Affiliation(s)
- G Goyault
- Department of Cardiovascular imaging, Cardiologic Hospital, University Hospital, 59037, Lille, Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Diffusion-weighted magnetic resonance imaging of the musculoskeletal system: an emerging technology with potential to impact clinical decision making. J Orthop Sports Phys Ther 2011; 41:887-95. [PMID: 21891872 DOI: 10.2519/jospt.2011.3744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diffusion-weighted imaging (DWI) is an application of magnetic resonance imaging that allows the measurement of water movement within and between tissues. Originally developed as a way of detecting early signs of stroke or brain disease, DWI is now being used to study physiologic events within the musculoskeletal system. The accurate measurement of water diffusion can provide important information regarding tissue responses associated with trauma and disease, as well as offer insight toward the mechanism by which physical therapy interventions affect tissues. The purpose of this paper is to discuss the rationale for DWI and its potential clinical and research applications for patients with musculoskeletal disorders. Specific examples of the use of DWI for patients with painful spinal disorders are used as illustrations.
Collapse
|
29
|
Yanagisawa O, Kurihara T, Fukubayashi T. Alterations in intramuscular water movement associated with mechanical changes in human skeletal muscle fibers: an evaluation using magnetic resonance diffusion-weighted imaging and B-mode ultrasonography. Acta Radiol 2011; 52:1003-8. [PMID: 21911840 DOI: 10.1258/ar.2011.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intramuscular water movement is expected to be affected by the mechanical changes of the muscle fibers. However, the effect of changes in fiber length (FL) and pennation angle (PA) on the water movement has not been sufficiently investigated in human skeletal muscles. PURPOSE To determine the relationship between intramuscular water movement and the mechanical changes in human muscle fibers. MATERIAL AND METHODS Axial magnetic resonance diffusion-weighted images of the right leg (eight men) were taken using a 1.5-Tesla device with the ankle joint maximally dorsiflexed and maximally plantar flexed. The apparent diffusion coefficient (ADC) values of both the dorsiflexors (the superficial and deep parts of the tibialis anterior) and the plantar flexors (medial gastrocnemius and soleus) were calculated along three orthogonal axes (S-I: superior-to-inferior, A-P: anterior-to-posterior, and R-L: right-to-left). FL and PA of both muscle groups were also calculated from longitudinal B-mode ultrasound images with the ankle joint maximally dorsiflexed and plantar flexed. RESULTS There was a significant increase in the ADC in superficial (P < 0.05) and deep (P < 0.05) parts of the dorsiflexors in the S-I direction when the ankle was plantar flexed and in the A-P and R-L directions when the ankle was dorsiflexed (P < 0.05). The plantar flexors showed significantly elevated ADC in the S-I direction when the ankle was dorsiflexed (P < 0.05), and in the A-P and R-L directions when the ankle was plantar flexed (P < 0.05). The dorsiflexors also showed significantly increased PA and decreased FL values when the ankle was dorsiflexed (P < 0.05). The plantar flexors displayed similar morphological changes when the ankle was plantar flexed (P < 0.05). CONCLUSION Water diffusion is affected by structural changes in the long axis of the muscle fibers, namely the changes in PA and FL.
Collapse
|
30
|
Elliott JM, Pedler AR, Cowin G, Sterling M, McMahon K. Spinal cord metabolism and muscle water diffusion in whiplash. Spinal Cord 2011; 50:474-6. [DOI: 10.1038/sc.2011.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Yanagisawa O, Fukubayashi T. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle. Clin Radiol 2010; 65:874-80. [DOI: 10.1016/j.crad.2010.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
32
|
Diffusion-weighted magnetic resonance imaging for the healthy cervical multifidus: a potential method for studying neck muscle physiology following spinal trauma. J Orthop Sports Phys Ther 2010; 40:722-8. [PMID: 20811164 DOI: 10.2519/jospt.2010.3423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Cross-sectional. OBJECTIVE To develop a new magnetic resonance imaging (MRI) measure for the diffusive properties of the healthy cervical multifidus and to determine the interrater and intrarater reliability of the measurement. BACKGROUND Diffusion-weighted MRI, via calculation of the apparent diffusion coefficient (ADC), provides a representation of microscopic movements of water molecules in human tissues and may be useful to assess structural changes in neck muscle, as has been observed following whiplash. The optimal imaging parameters, however, have not been established. METHODS A diffusion-weighted MRI measure was developed, and, for the basic examination, the right cervical multifidus muscle at the C5 level was studied. A total of 6 asymptomatic volunteer individuals (3 females and 3 males) underwent a single diffusion-weighted MRI scan. Interrater and intrarater agreement was evaluated using Bland-Altman plots and intraclass correlation coefficients. RESULTS Mean ADCb0-b50 and ADCb50-250 were significantly different from one another (P=.03). The plots confirmed the agreement of raters for ADC of the right cervical multifidus at C5. CONCLUSIONS A quantitative and reliable diffusion-weighted MRI measure of cervical multifidus ADC has been described. There appears to be a fast and slow component ADC for the healthy multifidus, suggesting changes in extracellular and intracellular volume. Further comparative study is needed to quantify ADCs in the neck muscles in patients with traumatic whiplash.
Collapse
|
33
|
Yanagisawa O, Takahashi H, Fukubayashi T. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: Evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging. J Sports Sci 2010; 28:1157-63. [DOI: 10.1080/02640414.2010.504782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Froeling M, Oudeman J, van den Berg S, Nicolay K, Maas M, Strijkers GJ, Drost MR, Nederveen AJ. Reproducibility of diffusion tensor imaging in human forearm muscles at 3.0 T in a clinical setting. Magn Reson Med 2010; 64:1182-90. [DOI: 10.1002/mrm.22477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel partially coherent motion technique: Characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging 2010; 31:942-53. [DOI: 10.1002/jmri.22100] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
36
|
Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis. AJR Am J Roentgenol 2010; 193:1556-60. [PMID: 19933647 DOI: 10.2214/ajr.09.2436] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of our study was to determine the usefulness of the apparent diffusion coefficient (ADC) of liver parenchyma for determining the severity of liver fibrosis. MATERIALS AND METHODS This study investigated 78 patients who underwent diffusion-weighted imaging (DWI) with 1.5-T MRI and pathologic staging of liver fibrosis based on biopsy. DWI was performed with b values of 50 and 400 s/mm(2). ADCs of liver were measured using 2.0- to 3.0-cm(2) regions of interest in the right and left lobes of the liver; the mean ADC value was used for analysis. Pathologic METAVIR scores for liver fibrosis stage were used as a reference standard. RESULTS The mean ADC values for fibrosis pathologically staged using the METAVIR classification system as F0 (n = 11), F1 (n = 16), F2 (n = 10), F3 (n = 14), and F4 (n = 27) were 125.9, 105.0, 104.5, 103.2, and 99.1 x 10(-5) s/mm(2), respectively. The correlation between the ADC values and the degree of liver fibrosis was moderate (Spearman's test, rho = -0.36). There was a significant difference in ADC values between patients with nonfibrotic liver (F0) and those with cirrhotic liver (F4) (p = 0.008). The best cutoff ADC value to distinguish between these groups was 118 x 10(-5) s/mm(2). However, ADC values were not useful for differentiating viral hepatitis patients with F2 fibrosis or higher from those with a lower degree of fibrosis (area under the receiver operating characteristic curve [AUC] = 0.66) or for differentiating low-stage fibrosis in all patients from high-stage fibrosis in all patients (AUC = 0.54). CONCLUSION The ADCs in cirrhotic livers are significantly lower than those in nonfibrotic livers. However, ADC values measured using the current generation of scanners are not reliable enough to replace liver biopsy for staging hepatic fibrosis.
Collapse
|
37
|
Yanagisawa O, Shimao D, Maruyama K, Nielsen M. Evaluation of exercised or cooled skeletal muscle on the basis of diffusion-weighted magnetic resonance imaging. Eur J Appl Physiol 2008; 105:723-9. [PMID: 19084988 DOI: 10.1007/s00421-008-0954-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
In this study, we assessed the physiological changes after exercising or cooling skeletal muscles on the basis of the apparent diffusion coefficient (ADC) values in magnetic resonance (MR) diffusion-weighted images (DWIs). DWIs of the ankle dorsiflexors were acquired with a 1.5-T MR device before and after exercising (22 subjects) or cooling (19 subjects). The exercise comprised a 5-min walk with the ankles dorsiflexed and a 30-time ankle dorsiflexion. Cooling (0 degrees C) of the ankle dorsiflexors was performed for 30 min. ADC values were calculated as ADC1-reflecting diffusion and perfusion and ADC2-approximating the true diffusion coefficient of the ankle dorsiflexors before and after exercising or cooling. ADC1 and ADC2 significantly increased with exercise and decreased with cooling (P < 0.05). Considering both diffusion and perfusion, ADC values allowed us to evaluate the intramuscular changes induced by exercising or cooling in terms of the motion of water molecules and microcirculation.
Collapse
Affiliation(s)
- Osamu Yanagisawa
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan,
| | | | | | | |
Collapse
|