1
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Weber KA, Chen Y, Paliwal M, Law CS, Hopkins BS, Mackey S, Dhaher Y, Parrish TB, Smith ZA. Assessing the spatial distribution of cervical spinal cord activity during tactile stimulation of the upper extremity in humans with functional magnetic resonance imaging. Neuroimage 2020; 217:116905. [PMID: 32387628 PMCID: PMC7386934 DOI: 10.1016/j.neuroimage.2020.116905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dermatomal maps are a mainstay of clinical practice and provide information on the spatial distribution of the cutaneous innervation of spinal nerves. Dermatomal deficits can help isolate the level of spinal nerve root involvement in spinal conditions and guide clinicians in diagnosis and treatment. Dermatomal maps, however, have limitations, and the spatial distribution of spinal cord sensory activity in humans remains to be quantitatively assessed. Here we used spinal cord functional MRI to map and quantitatively compare the spatial distribution of sensory spinal cord activity during tactile stimulation of the left and right lateral shoulders (i.e. C5 dermatome) and dorsal third digits of the hands (i.e., C7 dermatome) in healthy humans (n = 24, age = 36.8 ± 11.8 years). Based on the central sites for processing of innocuous tactile sensory information, we hypothesized that the activity would be localized more to the ipsilateral dorsal spinal cord with the lateral shoulder stimulation activity being localized more superiorly than the dorsal third digit. The findings demonstrate lateralization of the activity with the left- and right-sided stimuli having more activation in the ipsilateral hemicord. Contradictory to our hypotheses, the activity for both stimulation sites was spread across the dorsal and ventral hemicords and did not demonstrate a clear superior-inferior localization. Instead, the activity for both stimuli had a broader than expected distribution, extending across the C5, C6, and C7 spinal cord segments. We highlight the complexity of the human spinal cord neuroanatomy and several sources of variability that may explain the observed patterns of activity. While the findings were not completely consistent with our a priori hypotheses, this study provides a foundation for continued work and is an important step towards developing normative quantitative spinal cord measures of sensory function, which may become useful objective MRI-based biomarkers of neurological injury and improve the management of spinal disorders.
Collapse
Affiliation(s)
- Kenneth A Weber
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA.
| | - Yufen Chen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Monica Paliwal
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christine S Law
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Benjamin S Hopkins
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean Mackey
- Systems Neuroscience and Pain Lab, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Yasin Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zachary A Smith
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
A practical protocol for measurements of spinal cord functional connectivity. Sci Rep 2018; 8:16512. [PMID: 30410122 PMCID: PMC6224587 DOI: 10.1038/s41598-018-34841-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Resting state functional magnetic resonance imaging (fMRI) has been used to study human brain function for over two decades, but only recently has this technique been successfully translated to the human spinal cord. The spinal cord is structurally and functionally unique, so resting state fMRI methods developed and optimized for the brain may not be appropriate when applied to the cord. This report therefore investigates the relative impact of different acquisition and processing choices (including run length, echo time, and bandpass filter width) on the detectability of resting state spinal cord networks at 3T. Our results suggest that frequencies beyond 0.08 Hz should be included in resting state analyses, a run length of ~8-12 mins is appropriate for reliable detection of the ventral (motor) network, and longer echo times - yet still shorter than values typically used for fMRI in the brain - may increase the detectability of the dorsal (sensory) network. Further studies are required to more fully understand and interpret the nature of resting state spinal cord networks in health and in disease, and the protocols described in this report are designed to assist such studies.
Collapse
|
4
|
Hu Y, Jin R, Li G, Luk KDK, Wu EX. Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction. J Magn Reson Imaging 2018; 48:1421-1431. [DOI: 10.1002/jmri.26048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/23/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yong Hu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Hong Kong
| | - Richu Jin
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Hong Kong
| | - Guangsheng Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Hong Kong
- Department of Orthopaedics; Affiliated Hospital of Guangdong Medical University; Zhanjiang China
| | - Keith DK Luk
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Hong Kong
| | - Ed. X. Wu
- Department of Electrical and Electronic Engineering, Faculty of Engineering; University of Hong Kong; Pokfulam Hong Kong
| |
Collapse
|
5
|
Abstract
The challenges and understanding of acute and chronic pain have been illuminated through the advancement of central neuroimaging. Through neuroimaging research, new technology and findings have allowed us to identify and understand the neural mechanisms contributing to chronic pain. Several regions of the brain are known to be of particular importance for the maintenance and amplification of chronic pain, and this knowledge provides novel targets for future research and treatment. This article reviews neuroimaging for the study of chronic pain, and in particular, the rapidly advancing and popular research tools of structural and functional MRI.
Collapse
Affiliation(s)
- Katherine T Martucci
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Stanford Systems Neuroscience and Pain Lab (SNAPL), 1070 Arastradero Road, Suite 200, MC 5596, Palo Alto, CA 94304-1345, USA
| | - Sean C Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Division of Pain Medicine, Stanford Systems Neuroscience and Pain Lab (SNAPL), 1070 Arastradero Road, Suite 200, MC 5596, Palo Alto, CA 94304-1345, USA.
| |
Collapse
|
6
|
Elliott JM, Owen M, Bishop MD, Sparks C, Tsao H, Walton DM, Weber KA, Wideman TH. Measuring Pain for Patients Seeking Physical Therapy: Can Functional Magnetic Resonance Imaging (fMRI) Help? Phys Ther 2017; 97:145-155. [PMID: 27470977 DOI: 10.2522/ptj.20160089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
In the multidisciplinary fields of pain medicine and rehabilitation, advancing techniques such as functional magnetic resonance imaging (fMRI) are used to enhance our understanding of the pain experience. Given that such measures, in some circles, are expected to help us understand the brain in pain, future research in pain measurement is undeniably rich with possibility. However, pain remains intensely personal and represents a multifaceted experience, unique to each individual; no single measure in isolation, fMRI included, can prove or quantify its magnitude beyond the patient self-report. Physical therapists should be aware of cutting-edge advances in measuring the patient's pain experience, and they should work closely with professionals in other disciplines (eg, magnetic resonance physicists, biomedical engineers, radiologists, psychologists) to guide the exploration and development of multimodal pain measurement and management on a patient-by-patient basis. The primary purpose of this perspective article is to provide a brief overview of fMRI and inform physical therapist clinicians of the pros and cons when utilized as a measure of the patient's perception of pain. A secondary purpose is to describe current known factors that influence the quality of fMRI data and its analyses, as well as the potential for future clinical applications relevant to physical therapist practice. Lastly, the interested reader is introduced and referred to existing guidelines and recommendations for reporting fMRI research.
Collapse
|
7
|
Eippert F, Kong Y, Winkler AM, Andersson JL, Finsterbusch J, Büchel C, Brooks JCW, Tracey I. Investigating resting-state functional connectivity in the cervical spinal cord at 3T. Neuroimage 2016; 147:589-601. [PMID: 28027960 PMCID: PMC5315056 DOI: 10.1016/j.neuroimage.2016.12.072] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
The study of spontaneous fluctuations in the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord. Two ultra-high field functional magnetic resonance imaging (fMRI) studies in humans have provided evidence for reproducible resting-state connectivity between the dorsal horns as well as between the ventral horns, and a study in non-human primates has shown that these resting-state signals are impacted by spinal cord injury. As these studies were carried out at ultra-high field strengths using region-of-interest (ROI) based analyses, we investigated whether such resting-state signals could also be observed at the clinically more prevalent field strength of 3 T. In a reanalysis of a sample of 20 healthy human participants who underwent a resting-state fMRI acquisition of the cervical spinal cord, we were able to observe significant dorsal horn connectivity as well as ventral horn connectivity, but no consistent effects for connectivity between dorsal and ventral horns, thus replicating the human 7 T results. These effects were not only observable when averaging along the acquired length of the spinal cord, but also when we examined each of the acquired spinal segments separately, which showed similar patterns of connectivity. Finally, we investigated the robustness of these resting-state signals against variations in the analysis pipeline by varying the type of ROI creation, temporal filtering, nuisance regression and connectivity metric. We observed that – apart from the effects of band-pass filtering – ventral horn connectivity showed excellent robustness, whereas dorsal horn connectivity showed moderate robustness. Together, our results provide evidence that spinal cord resting-state connectivity is a robust and spatially consistent phenomenon that could be a valuable tool for investigating the effects of pathology, disease progression, and treatment response in neurological conditions with a spinal component, such as spinal cord injury.
Collapse
Affiliation(s)
- Falk Eippert
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Yazhuo Kong
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Magnetic Resonance Imaging Research Centre, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Anderson M Winkler
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jesper L Andersson
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Liu X, Qian W, Jin R, Li X, Luk KDK, Wu EX, Hu Y. Amplitude of Low Frequency Fluctuation (ALFF) in the Cervical Spinal Cord with Stenosis: A Resting State fMRI Study. PLoS One 2016; 11:e0167279. [PMID: 27907060 PMCID: PMC5132295 DOI: 10.1371/journal.pone.0167279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a common spinal cord dysfunction disease with complex symptoms in clinical presentation. Resting state fMRI (rsfMRI) has been introduced to study the mechanism of neural development of CSM. However, most of those studies focused on intrinsic functional connectivity rather than intrinsic regional neural activity level which is also frequently analyzed in rsfMRI studies. Thus, this study aims to explore whether the level of neural activity changes on the myelopathic cervical cord and evaluate the possible relationship between this change and clinical symptoms through amplitude of low frequency fluctuation (ALFF). Eighteen CSM patients and twenty five healthy subjects participated in rsfMRI scanning. ALFF was investigated on each patient and subject. The results suggested that ALFF values were higher in the CSM patients at all cervical segments, compared to the healthy controls. The severity of myelopathy was associated with the increase of ALFF. This finding would enrich our understanding on the neural development mechanism of CSM.
Collapse
Affiliation(s)
- Xiaojia Liu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wenshu Qian
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Richu Jin
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Keith DK Luk
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ed. X. Wu
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yong Hu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Spinal division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- * E-mail:
| |
Collapse
|
9
|
Eippert F, Kong Y, Jenkinson M, Tracey I, Brooks JCW. Denoising spinal cord fMRI data: Approaches to acquisition and analysis. Neuroimage 2016; 154:255-266. [PMID: 27693613 DOI: 10.1016/j.neuroimage.2016.09.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the human spinal cord is a difficult endeavour due to the cord's small cross-sectional diameter, signal drop-out as well as image distortion due to magnetic field inhomogeneity, and the confounding influence of physiological noise from cardiac and respiratory sources. Nevertheless, there is great interest in spinal fMRI due to the spinal cord's role as the principal sensorimotor interface between the brain and the body and its involvement in a variety of sensory and motor pathologies. In this review, we give an overview of the various methods that have been used to address the technical challenges in spinal fMRI, with a focus on reducing the impact of physiological noise. We start out by describing acquisition methods that have been tailored to the special needs of spinal fMRI and aim to increase the signal-to-noise ratio and reduce distortion in obtained images. Following this, we concentrate on image processing and analysis approaches that address the detrimental effects of noise. While these include variations of standard pre-processing methods such as motion correction and spatial filtering, the main focus lies on denoising techniques that can be applied to task-based as well as resting-state data sets. We review both model-based approaches that rely on externally acquired respiratory and cardiac signals as well as data-driven approaches that estimate and correct for noise using the data themselves. We conclude with an outlook on techniques that have been successfully applied for noise reduction in brain imaging and whose use might be beneficial for fMRI of the human spinal cord.
Collapse
Affiliation(s)
- Falk Eippert
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yazhuo Kong
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
Organization of the intrinsic functional network in the cervical spinal cord: A resting state functional MRI study. Neuroscience 2016; 336:30-38. [PMID: 27590264 DOI: 10.1016/j.neuroscience.2016.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) has been extensively applied to investigate the organization of functional networks in the brain. As an essential part of the central nervous system (CNS), the spinal cord has not been well explored about its intrinsic functional network. In this study, we aim to thoroughly investigate the characteristics of the intrinsic functional network in the spinal cord using rsfMRI. Functional connectivity and graph theory analysis were employed to evaluate the organization of the functional network, including its topology and network communication properties. Furthermore, the reproducibility of rsfMRI analysis on the spinal cord was also examined by intra-class correlation (ICC). Comprehensive evaluation of the intrinsic functional organization presented a non-uniform distribution of topological characteristics of the functional network, in which the upper levels (C2 and C3 vertebral levels) of the cervical spinal cord showed high levels of connectivity. The present results revealed the significance of the upper cervical cord in the intrinsic functional network of the human cervical spinal cord. In addition, this study demonstrated the efficiency of the cervical spinal cord functional network and the reproducibility of rsfMRI analysis on the spinal cord was also confirmed. As knowledge expansion of intrinsic functional network from the brain to the spinal cord, this study shed light on the organization of the spinal cord functional network in both normal development and clinical disorders.
Collapse
|
11
|
Martini M, Lee MCH, Valentini E, Iannetti GD. Intracortical modulation, and not spinal inhibition, mediates placebo analgesia. Eur J Neurosci 2014; 41:498-504. [PMID: 25523008 DOI: 10.1111/ejn.12807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022]
Abstract
Suppression of spinal responses to noxious stimulation has been detected using spinal fMRI during placebo analgesia, which is therefore increasingly considered a phenomenon caused by descending inhibition of spinal activity. However, spinal fMRI is technically challenging and prone to false-positive results. Here we recorded laser-evoked potentials (LEPs) during placebo analgesia in humans. LEPs allow neural activity to be measured directly and with high enough temporal resolution to capture the sequence of cortical areas activated by nociceptive stimuli. If placebo analgesia is mediated by inhibition at spinal level, this would result in a general suppression of LEPs rather than in a selective reduction of their late components. LEPs and subjective pain ratings were obtained in two groups of healthy volunteers - one was conditioned for placebo analgesia while the other served as unconditioned control. Laser stimuli at three suprathreshold energies were delivered to the right hand dorsum. Placebo analgesia was associated with a significant reduction of the amplitude of the late P2 component. In contrast, the early N1 component, reflecting the arrival of the nociceptive input to the primary somatosensory cortex (SI), was only affected by stimulus energy. This selective suppression of late LEPs indicates that placebo analgesia is mediated by direct intracortical modulation rather than inhibition of the nociceptive input at spinal level. The observed cortical modulation occurs after the responses elicited by the nociceptive stimulus in the SI, suggesting that higher order sensory processes are modulated during placebo analgesia.
Collapse
Affiliation(s)
- M Martini
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Department of Psychology, Sapienza University of Rome, Rome, Italy; Fondazione Santa Lucia, Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | | | | | | |
Collapse
|
12
|
Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? FUTURE NEUROLOGY 2014; 9:615-626. [PMID: 28163658 PMCID: PMC5289824 DOI: 10.2217/fnl.14.57] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advances in neuroimaging have helped illuminate our understanding of how the brain works in the presence of chronic pain, which often persists with unknown etiology or after the painful stimulus has been removed and any wounds have healed. Neuroimaging has enabled us to make great progress in identifying many of the neural mechanisms that contribute to chronic pain, and to pinpoint the specific regions of the brain that are activated in the presence of chronic pain. It has provided us with a new perception of the nature of chronic pain in general, leading researchers to move toward a whole-brain approach to the study and treatment of chronic pain, and to develop novel technologies and analysis techniques, with real potential for developing new diagnostics and more effective therapies. We review the use of neuroimaging in the study of chronic pain, with particular emphasis on magnetic resonance imaging.
Collapse
Affiliation(s)
- Katherine T Martucci
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| | - Pamela Ng
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 200, Palo Alto, CA 94304, USA
| |
Collapse
|
13
|
Bosma R, Stroman P. Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data. Magn Reson Imaging 2014; 32:473-81. [DOI: 10.1016/j.mri.2014.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
|
14
|
Bosma RL, Stroman PW. Spinal cord response to stepwise and block presentation of thermal stimuli: A functional MRI study. J Magn Reson Imaging 2014; 41:1318-25. [DOI: 10.1002/jmri.24656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/23/2014] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rachael L. Bosma
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
| | - Patrick W. Stroman
- Centre for Neuroscience Studies; Queen's University; Kingston Ontario Canada
| |
Collapse
|
15
|
Summers PE, Porro CA, Giove F. Somatotopy of nociceptive responses in the human spinal cord. Pain 2013; 154:2572-2573. [PMID: 23973357 DOI: 10.1016/j.pain.2013.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/15/2022]
Affiliation(s)
- Paul Eugene Summers
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41125 Modena, Italy Enrico Fermi Centre and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
16
|
Finsterbusch J, Sprenger C, Büchel C. Combined T2*-weighted measurements of the human brain and cervical spinal cord with a dynamic shim update. Neuroimage 2013; 79:153-61. [PMID: 23603283 DOI: 10.1016/j.neuroimage.2013.04.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/21/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022] Open
Abstract
Important functions of the central nervous system such as sensory processing and motor execution, involve the spinal cord. Recent advances in human functional MRI have allowed to investigate spinal cord neuronal processes using the blood-oxygenation-level-dependent (BOLD) contrast. However, to assess the functional connectivity between the brain and the spinal cord, functional MRI measurements covering both regions in the same experiment are required. Unfortunately, the ideal MRI setup differs considerably for the brain and the spinal cord with respect to resolution, field-of-view, relevant receive coils, and, in particular, shim adjustments required to minimize distortion artifacts. Here, these issues are addressed for combined T2*-weighted MRI measurements of the human brain and the cervical spinal cord by using adapted parameter settings (field-of-view, in-plane resolution, slice thickness, and receiver bandwidth) for each region, a dynamic receive coil element selection where for each slice only the elements with significant signal contributions are considered, and, most importantly, the implementation of a dynamic update of the frequency and the linear shims in order to provide shim settings individually adapted to the brain and spinal cord subvolume. The feasibility of this setup for combined measurements is demonstrated in healthy volunteers at 3T. Although geometric distortions are slightly more pronounced and the temporal signal-to-noise ratio is lower as compared to measurements focusing to the brain or spinal cord only, the overall image quality can be expected to be sufficient for combined functional MRI experiments. Thus, the presented approach could help to unravel the functional coupling between the brain and the spinal cord.
Collapse
Affiliation(s)
- Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
17
|
Brooks JCW. Assessing spinal cord function in multiple sclerosis with functional neuroimaging: insights and limitations. Mult Scler 2012; 18:1517-9. [PMID: 23100521 DOI: 10.1177/1352458512450357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Kornelsen J, Smith SD, McIver TA, Sboto-Frankenstein U, Latta P, Tomanek B. Functional MRI of the thoracic spinal cord during vibration sensation. J Magn Reson Imaging 2012; 37:981-5. [PMID: 23011888 DOI: 10.1002/jmri.23819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To demonstrate that it is possible to acquire accurate functional magnetic resonance images from thoracic spinal cord neurons. MATERIALS AND METHODS The lower thoracic spinal dermatomes (T7-T11) on the right side of the body were mechanically stimulated by vibration for 15 participants. Neuronal responses to vibration sensation were measured in the thoracic spinal cord using a HASTE sequence on a 3 Tesla MRI system. RESULTS Signal increases were observed in the corresponding lower thoracic spinal cord segments ipsilateral to the side of stimulation in the dorsal aspect of the spinal cord. CONCLUSION This is the first study to provide proof of principle that functional imaging of the entire thoracic spinal cord is possible, by detecting neuronal activity in the thoracic spinal cord during sensory stimulation using spinal fMRI.
Collapse
Affiliation(s)
- Jennifer Kornelsen
- National Research Council Institute for Biodiagnostics, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Figley CR, Stroman PW. Measurement and characterization of the human spinal cord SEEP response using event-related spinal fMRI. Magn Reson Imaging 2012; 30:471-84. [PMID: 22285878 DOI: 10.1016/j.mri.2011.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 12/04/2011] [Indexed: 01/21/2023]
Abstract
Although event-related fMRI is able to reliably detect brief changes in brain activity and is now widely used throughout systems and cognitive neuroscience, there have been no previous reports of event-related spinal cord fMRI. This is likely attributable to the various technical challenges associated with spinal fMRI (e.g., imaging a suitable length of the cord, reducing image artifacts from the vertebrae and intervertebral discs, and dealing with physiological noise from spinal cord motion). However, with many of these issues now resolved, the largest remaining impediment for event-related spinal fMRI is a deprived understanding of the spinal cord fMRI signal time course. Therefore, in this study, we used a proton density-weighted HASTE sequence, with functional contrast based on signal enhancement by extravascular water protons (SEEP), and a motion-compensating GLM analysis to (i) characterize the SEEP response function in the human cervical spinal cord and (ii) demonstrate the feasibility of event-related spinal fMRI. This was achieved by applying very brief (1 s) epochs of 22°C thermal stimulation to the palm of the hand and measuring the impulse response function. Our results suggest that the spinal cord SEEP response (time to peak ≈8 s; FWHM ≈4 s; and probably lacking pre- and poststimulus undershoots) is slower than previous estimates of SEEP or BOLD responses in the brain, but faster than previously reported spinal cord BOLD responses. Finally, by detecting and mapping consistent signal-intensity changes within and across subjects, and validating these regions with a block-designed experiment, this study represents the first successful demonstration of event-related spinal fMRI.
Collapse
Affiliation(s)
- Chase R Figley
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
20
|
Finsterbusch J, Eippert F, Büchel C. Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord. Neuroimage 2011; 59:2307-15. [PMID: 21979381 DOI: 10.1016/j.neuroimage.2011.09.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022] Open
Abstract
T2*-weighted imaging of the spinal cord suffers from signal dropouts that hamper blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI). They are due to field inhomogeneities caused by the different magnetic susceptibilities of the vertebrae and the intervertebral disks that vary periodically along the cord and, thus, cannot be compensated appropriately with conventional (constant) shimming. In this study, a single, slice-specific gradient pulse ("z-shim") is applied in echo-planar imaging of axial sections in order to compensate for the corresponding through-slice signal dephasing without affecting the acquisition time, i.e. the temporal resolution. Based on a reference acquisition sampling a range of compensation moments, the value yielding the maximum signal amplitude within the spinal cord is determined for each slice. Severe N/2 ghosting for larger compensation moments is avoided by applying the gradient pulse after the corresponding reference echoes. Furthermore, first-order flow compensation in the slice direction of both the slice-selection and the z-shim gradient pulse considerably reduces signal fluctuations in the cerebro-spinal fluid surrounding the spinal cord, i.e. would minimize ringing artifacts in fMRI. Phantom and in vivo experiments show the necessity to use slice-specific compensation moments in the presence of local susceptibility differences. Measurements performed in a group of 24 healthy volunteers at 3T demonstrate that this approach improves T2*-weighted imaging of axial sections of the cervical spinal cord by (i) increasing the signal intensity (overall by about 20%) and (ii) reducing signal intensity variations along the cord (by about 80%). Thus, it may help to improve the feasibility and reliability of fMRI of the spinal cord.
Collapse
Affiliation(s)
- Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
21
|
Critchley HD, Nagai Y, Gray MA, Mathias CJ. Dissecting axes of autonomic control in humans: Insights from neuroimaging. Auton Neurosci 2011; 161:34-42. [DOI: 10.1016/j.autneu.2010.09.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/30/2022]
|