1
|
Kamimura K, Nakano T, Hasegawa T, Nakajo M, Yamada C, Kamimura Y, Akune K, Ejima F, Ayukawa T, Nagano H, Takumi K, Nakajo M, Higa N, Yonezawa H, Hanaya R, Kirishima M, Tanimoto A, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Differentiating primary central nervous system lymphoma from glioblastoma by time-dependent diffusion using oscillating gradient. Cancer Imaging 2023; 23:114. [PMID: 38037172 PMCID: PMC10691025 DOI: 10.1186/s40644-023-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters. METHODS A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δeff = 7.1 ms) and conventional pulsed gradient (Δeff = 44.5 ms). In addition to ADC maps at the two diffusion times (ADC7.1 ms and ADC44.5 ms), we generated maps of the ADC changes (cADC) and the relative ADC changes (rcADC) between the two diffusion times. Regions of interest were placed on enhancing regions and non-enhancing peritumoral regions. The mean and the fifth and 95th percentile values of each parameter were compared between PCNSLs and GBMs. The area under the receiver operating characteristic curve (AUC) values were used to compare the discriminating performances among the indices. RESULTS In enhancing regions, the mean and fifth and 95th percentile values of ADC44.5 ms and ADC7.1 ms in PCNSLs were significantly lower than those in GBMs (p = 0.02 for 95th percentile of ADC44.5 ms, p = 0.04 for ADC7.1 ms, and p < 0.01 for others). Furthermore, the mean and fifth and 95th percentile values of cADC and rcADC were significantly higher in PCNSLs than in GBMs (each p < 0.01). The AUC of the best-performing index for ADC7.1 ms was significantly lower than that for ADC44.5 ms (p < 0.001). The mean rcADC showed the highest discriminating performance (AUC = 0.920) among all indices. In peritumoral regions, no significant difference in any of the three indices of ADC44.5 ms, ADC7.1 ms, cADC, and rcADC was observed between PCNSLs and GBMs. CONCLUSIONS Effective diffusion time setting can have a crucial impact on the performance of ADC in differentiating between PCNSLs and GBMs. The time-dependent diffusion MRI parameters may be useful in the differentiation of these lesions.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Tsubasa Nakano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomohito Hasegawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chihiro Yamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiki Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Akune
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroshi Imai
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-Ku, Tokyo, 141-8644, Japan
| | | | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
2
|
Devan SP, Jiang X, Luo G, Xie J, Quirk JD, Engelbach JA, Harmsen H, McKinley ET, Cui J, Zu Z, Attia A, Garbow JR, Gore JC, McKnight CD, Kirschner AN, Xu J. Selective Cell Size MRI Differentiates Brain Tumors from Radiation Necrosis. Cancer Res 2022; 82:3603-3613. [PMID: 35877201 PMCID: PMC9532360 DOI: 10.1158/0008-5472.can-21-2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/05/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis is a common characteristic of late-stage lung cancers. High doses of targeted radiotherapy can control tumor growth in the brain but can also result in radiotherapy-induced necrosis. Current methods are limited for distinguishing whether new parenchymal lesions following radiotherapy are recurrent tumors or radiotherapy-induced necrosis, but the clinical management of these two classes of lesions differs significantly. Here, we developed, validated, and evaluated a new MRI technique termed selective size imaging using filters via diffusion times (SSIFT) to differentiate brain tumors from radiotherapy necrosis in the brain. This approach generates a signal filter that leverages diffusion time dependence to establish a cell size-weighted map. Computer simulations in silico, cultured cancer cells in vitro, and animals with brain tumors in vivo were used to comprehensively validate the specificity of SSIFT for detecting typical large cancer cells and the ability to differentiate brain tumors from radiotherapy necrosis. SSIFT was also implemented in patients with metastatic brain cancer and radiotherapy necrosis. SSIFT showed high correlation with mean cell sizes in the relevant range of less than 20 μm. The specificity of SSIFT for brain tumors and reduced contrast in other brain etiologies allowed SSIFT to differentiate brain tumors from peritumoral edema and radiotherapy necrosis. In conclusion, this new, cell size-based MRI method provides a unique contrast to differentiate brain tumors from other pathologies in the brain. SIGNIFICANCE This work introduces and provides preclinical validation of a new diffusion MRI method that exploits intrinsic differences in cell sizes to distinguish brain tumors and radiotherapy necrosis.
Collapse
Affiliation(s)
- Sean P Devan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiaoyu Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Guozhen Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - John A Engelbach
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Hannah Harmsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jing Cui
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
- Alvin J Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Austin N Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Rahman N, Xu K, Omer M, Budde MD, Brown A, Baron CA. Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS One 2021; 16:e0255711. [PMID: 34739479 PMCID: PMC8570471 DOI: 10.1371/journal.pone.0255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Microstructure imaging with advanced diffusion MRI (dMRI) techniques have shown increased sensitivity and specificity to microstructural changes in various disease and injury models. Oscillating gradient spin echo (OGSE) dMRI, implemented by varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI, implemented via tensor valued diffusion encoding, may provide additional insight by increasing sensitivity to smaller spatial scales and disentangling fiber orientation dispersion from true microstructural changes, respectively. The aims of this study were to characterize the test-retest reproducibility of in vivo OGSE and μA dMRI metrics in the mouse brain at 9.4 Tesla and provide estimates of required sample sizes for future investigations. METHODS Twelve adult C57Bl/6 mice were scanned twice (5 days apart). Each imaging session consisted of multifrequency OGSE and μA dMRI protocols. Metrics investigated included μA, linear diffusion kurtosis, isotropic diffusion kurtosis, and the diffusion dispersion rate (Λ), which explores the power-law frequency dependence of mean diffusivity. The dMRI metric maps were analyzed with mean region-of-interest (ROI) and whole brain voxel-wise analysis. Bland-Altman plots and coefficients of variation (CV) were used to assess the reproducibility of OGSE and μA metrics. Furthermore, we estimated sample sizes required to detect a variety of effect sizes. RESULTS Bland-Altman plots showed negligible biases between test and retest sessions. ROI-based CVs revealed high reproducibility for most metrics (CVs < 15%). Voxel-wise CV maps revealed high reproducibility for μA (CVs ~ 10%), but low reproducibility for OGSE metrics (CVs ~ 50%). CONCLUSION Most of the μA dMRI metrics are reproducible in both ROI-based and voxel-wise analysis, while the OGSE dMRI metrics are only reproducible in ROI-based analysis. Given feasible sample sizes (10-15), μA metrics and OGSE metrics may provide sensitivity to subtle microstructural changes (4-8%) and moderate changes (> 6%), respectively.
Collapse
Affiliation(s)
- Naila Rahman
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kathy Xu
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammad Omer
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Arthur Brown
- Translational Neuroscience Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Corey A. Baron
- Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
The relationship between diffusion heterogeneity and microstructural changes in high-grade gliomas using Monte Carlo simulations. Magn Reson Imaging 2021; 85:108-120. [PMID: 34653578 DOI: 10.1016/j.mri.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) may aid accurate tumor grading. Decreased diffusivity and increased diffusion heterogeneity measures have been observed in high-grade gliomas using the non-monoexponential models for DWI. However, DWI measures concerning tissue characteristics in terms of pathophysiological and structural changes are yet to be established. Thus, this study aims to investigate the relationship between the diffusion measurements and microstructural changes in the presence of high-grade gliomas using a three-dimensional Monte Carlo simulation with systematic changes of microstructural parameters. METHODS Water diffusion was simulated in a microenvironment along with changes associated with the presence of high-grade gliomas, including increases in cell density, nuclear volume, extracellular volume (VFex), and extracellular tortuosity (λex), and changes in membrane permeability (Pmem). DWI signals were simulated using a pulsed gradient spin-echo sequence. The sequence parameters, including the maximum gradient strength and diffusion time, were set to be comparable to those of clinical scanners and advanced human MRI systems. The DWI signals were fitted using the gamma distribution and diffusional kurtosis models with b-values up to 6000 and 2500 s/mm2, respectively. RESULTS The diffusivity measures (apparent diffusion coefficients (ADC), Dgamma of the gamma distribution model and Dapp of the diffusional kurtosis model) decreased with increases in cell density and λex, and a decrease in Pmem. These diffusivity measures increased with increases in nuclear volume and VFex. The diffusion heterogeneity measures (σgamma of the gamma distribution model and Kapp of the diffusional kurtosis model) increased with increases in cell density or nuclear volume at the low Pmem, and a decrease in Pmem. Increased σgamma was also associated with an increase in VFex. CONCLUSION Among simulated microstructural changes, only increases in cell density at low Pmem or decreases in Pmem corresponded to both the decreased diffusivity and increased diffusion heterogeneity measures. The results suggest that increases in cell density at low Pmem or decreases in Pmem may be associated with the diffusion changes observed in high-grade gliomas.
Collapse
|
5
|
Gao F, Shen X, Zhang H, Ba R, Ma X, Lai C, Zhang J, Zhang Y, Wu D. Feasibility of oscillating and pulsed gradient diffusion MRI to assess neonatal hypoxia-ischemia on clinical systems. J Cereb Blood Flow Metab 2021; 41:1240-1250. [PMID: 32811261 PMCID: PMC8142137 DOI: 10.1177/0271678x20944353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diffusion-time- (td) dependent diffusion MRI (dMRI) extends our ability to characterize brain microstructure by measuring dMRI signals at varying td. The use of oscillating gradient (OG) is essential for accessing short td but is technically challenging on clinical MRI systems. This study aims to investigate the clinical feasibility and value of td-dependent dMRI in neonatal hypoxic-ischemic encephalopathy (HIE). Eighteen HIE neonates and six normal term-born neonates were scanned on a 3 T scanner, with OG-dMRI at an oscillating frequency of 33 Hz (equivalent td ≈ 7.5 ms) and pulsed gradient (PG)-dMRI at a td of 82.8 ms and b-value of 700 s/mm2. The td-dependence, as quantified by the difference in apparent diffusivity coefficients between OG- and PG-dMRI (ΔADC), was observed in the normal neonatal brains, and the ΔADC was higher in the subcortical white matter than the deep grey matter. In HIE neonates with severe and moderate injury, ΔADC significantly increased in the basal ganglia (BG) compared to the controls (23.7% and 10.6%, respectively). In contrast, the conventional PG-ADC showed a 12.6% reduction only in the severe HIE group. White matter edema regions also demonstrated increased ΔADC, where PG-ADC did not show apparent changes. Our result demonstrated that td-dependent dMRI provided high sensitivity in detecting moderate-to-severe HIE.
Collapse
Affiliation(s)
- Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoxia Shen
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaolu Ma
- Department of Neonatal Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Can Lai
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangyang Zhang
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wu D, Zhang Y, Cheng B, Mori S, Reeves RH, Gao FJ. Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome. Brain Commun 2021; 3:fcab062. [PMID: 33937769 PMCID: PMC8063586 DOI: 10.1093/braincomms/fcab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The cerebellum is a complex system with distinct cortical laminar organization. Alterations in cerebellar microstructure are common and associated with many factors such as genetics, cancer and ageing. Diffusion MRI (dMRI) provides a non-invasive tool to map the brain structural organization, and the recently proposed diffusion-time (td )-dependent dMRI further improves its capability to probe the cellular and axonal/dendritic microstructures by measuring water diffusion at multiple spatial scales. The td -dependent diffusion profile in the cerebellum and its utility in detecting cerebellar disorders, however, are not yet elucidated. Here, we first deciphered the spatial correspondence between dMRI contrast and cerebellar layers, based on which the cerebellar layer-specific td -dependent dMRI patterns were characterized in both euploid and Ts65Dn mice, a mouse model of Down syndrome. Using oscillating gradient dMRI, which accesses diffusion at short td 's by modulating the oscillating frequency, we detected subtle changes in the apparent diffusivity coefficient of the cerebellar internal granular layer and Purkinje cell layer of Ts65Dn mice that were not detectable by conventional pulsed gradient dMRI. The detection sensitivity of oscillating gradient dMRI increased with the oscillating frequency at both the neonatal and adult stages. The td -dependence, quantified by ΔADC map, was reduced in Ts65Dn mice, likely associated with the reduced granule cell density and abnormal dendritic arborization of Purkinje cells as revealed from histological evidence. Our study demonstrates superior sensitivity of short-td diffusion using oscillating gradient dMRI to detect cerebellar microstructural changes in Down syndrome, suggesting the potential application of this technique in cerebellar disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bei Cheng
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Feng J Gao
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Xu J. Probing neural tissues at small scales: Recent progress of oscillating gradient spin echo (OGSE) neuroimaging in humans. J Neurosci Methods 2020; 349:109024. [PMID: 33333089 PMCID: PMC10124150 DOI: 10.1016/j.jneumeth.2020.109024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The detection sensitivity of diffusion MRI (dMRI) is dependent on diffusion times. A shorter diffusion time can increase the sensitivity to smaller length scales. However, the conventional dMRI uses the pulse gradient spin echo (PGSE) sequence that probes relatively long diffusion times only. To overcome this, the oscillating gradient spin echo (OGSE) sequence has been developed to probe much shorter diffusion times with hardware limitations on preclinical and clinical MRI systems. The OGSE sequence has been previously used on preclinical animal MRI systems. Recently, several studies have translated the OGSE sequence to humans on clinical MRI systems and achieved new information that is invisible using conventional PGSE sequence. This paper provides an overview of the recent progress of the OGSE neuroimaging in humans, including the technical improvements in the translation of the OGSE sequence to human imaging and various applications in different neurological disorders and stroke. Some possible future directions of the OGSE sequence are also discussed.
Collapse
Affiliation(s)
- Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Moutal N, Maximov II, Grebenkov DS. Probing Surface-to-Volume Ratio of an Anisotropic Medium by Diffusion NMR with General Gradient Encoding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2507-2522. [PMID: 30843822 DOI: 10.1109/tmi.2019.2902957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since the seminal paper by Mitra et al., diffusion MR has been widely used in order to estimate surface-to-volume ratios. In this paper, we generalize Mitra's formula for arbitrary diffusion encoding waveforms, including recently developed q-space trajectory encoding sequences. We show that the surface-to-volume ratio can be significantly misestimated using the original Mitra's formula without taking into account the applied gradient profile. In order to obtain more accurate estimation in anisotropic samples, we propose an efficient and robust optimization algorithm to design diffusion gradient waveforms with prescribed features. Our results are supported by Monte Carlo simulations.
Collapse
|
9
|
Wagner M, Doblas S, Poté N, Lambert SA, Ronot M, Garteiser P, Paradis V, Vilgrain V, Van Beers BE. Comparison of pulsed and oscillating gradient diffusion-weighted MRI for characterizing hepatocellular nodules in liver cirrhosis: ex vivo study in a rat model. J Magn Reson Imaging 2019; 51:1065-1074. [PMID: 31507025 DOI: 10.1002/jmri.26919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In contrast to classical pulsed gradient diffusion-weighted MRI, oscillating gradient diffusion-weighted MR imaging (DWI) is sensitive to short distance diffusion changes at the intracellular level. PURPOSE To compare the diagnostic performance of pulsed and oscillating DWI for characterizing hepatocellular nodules in a rat model of hepatic cirrhosis. STUDY TYPE Prospective, experimental study. ANIMAL MODEL Cirrhosis was induced by weekly intraperitoneal injection of diethylnitrosamine in Wistar rats. FIELD STRENGTH/SEQUENCE Ex vivo liver MRI was performed at 7T with T1 -weighted, T2 -weighted, pulsed, and oscillating gradient diffusion-weighted sequences. ASSESSMENT Apparent diffusion coefficient from pulsed (ADCpulsed ) and oscillating gradient (ADCoscillating ) sequences was calculated in 82 nodules identified on the T1 /T2 -weighted images and on pathological examination. Two pathologists classified the nodules in three categories: benign (regenerative and low-grade dysplastic nodules), with intermediate malignancy (high-grade dysplastic nodules and early hepatocellular carcinomas) and overtly malignant (progressed hepatocellular carcinomas). STATISTICAL TESTS Differences between groups were assessed with Kruskal-Wallis and Mann-Whitney tests. RESULTS ADC, mainly ADCoscillating , increased in the group of nodules with intermediate malignancy (ADCpulsed : 0.75 ± 0.25 × 10-3 mm2 /s vs. 0.64 ± 0.07 × 10-3 mm2 /s in benign nodules, P = 0.025; ADCoscillating : 0.81 ± 0.20 × 10-3 mm2 /s vs. 0.65 ± 0.13 × 10-3 mm2 /s, P = 0.0008) and ADCpulsed decreased in the group of progressed hepatocellular carcinomas (ADCpulsed : 0.60 ± 0.08 × 10-3 mm2 /s, P = 0.042; ADCoscillating : 0.68 ± 0.08 × 10-3 mm2 /s, P = 0.1). DATA CONCLUSION ADC during hepatocarcinogenesis in rats increased in nodules with intermediate malignancy and decreased in progressed hepatocellular carcinomas. Our results suggest that oscillating gradient DWI is more sensitive to the early steps of hepatocarcinogenesis and might be useful for differentiating between high-grade dysplastic nodules / early hepatocellular carcinomas and regenerating nodules / low-grade dysplastic nodules. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1065-1074.
Collapse
Affiliation(s)
- Mathilde Wagner
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France.,Department of Radiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France
| | - Nicolas Poté
- Department of Pathology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France.,Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France
| | - Simon A Lambert
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France.,CREATIS, CNRS UMR 5220 - Inserm U1206, University of Lyon, Villeurbanne, France
| | - Maxime Ronot
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France.,Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France
| | - Valérie Paradis
- Department of Pathology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France.,Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France
| | - Valérie Vilgrain
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France.,Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Center for Research on Inflammation, UMR 1149, Inserm - University of Paris, Paris, France.,Department of Radiology, Beaujon University Hospital Paris Nord, AP-HP, Clichy, France
| |
Collapse
|
10
|
Wu D, Zhang J. Evidence of the diffusion time dependence of intravoxel incoherent motion in the brain. Magn Reson Med 2019; 82:2225-2235. [PMID: 31267578 DOI: 10.1002/mrm.27879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the diffusion time (TD ) dependence of intravoxel incoherent motion (IVIM) signals in the brain. METHODS A 3-compartment IVIM model was proposed to characterize 2 types of microcirculatory flows in addition to tissue water in the brain: flows that cross multiple vascular segments (pseudo-diffusive) and flows that stay in 1 segment (ballistic) within TD . The model was first evaluated using simulated flow signals. Experimentally, flow-compensated (FC) pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences were tested using a flow phantom and then used to examine IVIM signals in the mouse brain with TD ranging from ~2.5 ms to 40 ms on an 11.7T scanner. RESULTS By fitting the model to simulated flow signals, we demonstrated the TD dependency of the estimated fraction of pseudo-diffusive flow and the pseudo-diffusion coefficient (D*), which were dictated by the characteristic timescale of microcirculatory flow (τ). Flow phantom experiments validated that the OGSE and FC-PGSE sequences were not susceptible to the change in flow velocity. In vivo mouse brain data showed that both the estimated fraction of pseudo-diffusive flow and D* increased significantly as TD increased. CONCLUSION We demonstrated that IVIM signals measured in the brain are TD -dependent, potentially because more microcirculatory flows approach the pseudo-diffusive limit as TD increases with respect to τ. Measuring the TD dependency of IVIM signals may provide additional information on microvascular flows in the brain.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
11
|
Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating-gradient diffusion magnetic resonance imaging detects acute subcellular structural changes in the mouse forebrain after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2019; 39:1336-1348. [PMID: 29436246 PMCID: PMC6668516 DOI: 10.1177/0271678x18759859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recently developed oscillating-gradient diffusion MRI (OG-dMRI) technique extends our ability to examine brain structures at different spatial scales. In this study, we investigated the sensitivity of OG-dMRI in detecting cellular and subcellular structural changes in a mouse model of neonatal hypoxia ischemia (HI). Neonatal mice received unilateral HI injury or sham injury at postnatal day 10, followed by in vivo T2-weighted and diffusion MRI of the brains at 3-6 h and 24 h after HI. Apparent diffusion coefficient (ADC) maps were acquired using conventional pulsed-gradient dMRI (PG-dMRI) and OG-dMRI with oscillating frequencies from 50 to 200 Hz. Pathology at cellular and subcellular levels was evaluated using neuronal, glial, and mitochondrial markers. We found significantly higher rates of ADC increase with oscillating frequencies (ΔfADC) in the ipsilateral edema region, compared to the contralateral side, starting as early as 3 h after HI. Even in injured regions that showed no apparent change in PG-ADC or pseudo-normalized PG-ADC measurements, ΔfADC remained significantly elevated. Histopathology showed swelling of sub-cellular structures in these regions with no apparent whole-cell level change. These results suggest that OG-dMRI is sensitive to subcellular structural changes in the brain after HI and is less susceptible to pseudo-normalization than PG-dMRI.
Collapse
Affiliation(s)
- Dan Wu
- 1 Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,2 Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lee J Martin
- 3 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,4 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J Northington
- 5 Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- 6 Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
McHugh DJ, Hubbard Cristinacce PL, Naish JH, Parker GJM. Towards a 'resolution limit' for DW-MRI tumor microstructural models: A simulation study investigating the feasibility of distinguishing between microstructural changes. Magn Reson Med 2019; 81:2288-2301. [PMID: 30338871 PMCID: PMC6492139 DOI: 10.1002/mrm.27551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the feasibility of extracting sufficiently precise estimates of cell radius, R, and intracellular volume fraction, fi , from DW-MRI data in order to distinguish between specific microstructural changes tissue may undergo, specifically focusing on cell death in tumors. METHODS Simulations with optimized and non-optimized clinical acquisitions were performed for a range of microstructures, using a two-compartment model. The ability to distinguish between (i) cell shrinkage with cell density constant, mimicking apoptosis, and (ii) cell size constant with cell density decreasing, mimicking loss of cells, was evaluated based on the precision of simulated parameter estimates. Relationships between parameter precision, SNR, and the magnitude of specific parameter changes, were used to infer SNR requirements for detecting changes. RESULTS Accuracy and precision depended on microstructural properties, SNR, and the acquisition protocol. The main benefit of optimized acquisitions tended to be improved accuracy and precision of R, particularly for small cells. In most cases considered, higher SNR was required for detecting changes in R than for changes in fi . CONCLUSIONS Given the relative changes in R and fi due to apoptosis, simulations indicate that, for a range of microstructures, detecting changes in R require higher SNR than detecting changes in fi , and that such SNR is typically not achieved in clinical data. This suggests that if apoptotic cell size decreases are to be detected in clinical settings, improved SNR is required. Comparing measurement precision with the magnitude of expected biological changes should form part of the validation process for potential biomarkers.
Collapse
Affiliation(s)
- Damien J. McHugh
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUnited Kingdom
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterUnited Kingdom
| | | | - Josephine H. Naish
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUnited Kingdom
| | - Geoffrey J. M. Parker
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUnited Kingdom
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterUnited Kingdom
- Bioxydyn Ltd.ManchesterUnited Kingdom
| |
Collapse
|
13
|
McHugh DJ, Zhou F, Wimpenny I, Poologasundarampillai G, Naish JH, Hubbard Cristinacce PL, Parker GJM. A biomimetic tumor tissue phantom for validating diffusion-weighted MRI measurements. Magn Reson Med 2018; 80:147-158. [PMID: 29154442 PMCID: PMC5900984 DOI: 10.1002/mrm.27016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/22/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE To develop a biomimetic tumor tissue phantom which more closely reflects water diffusion in biological tissue than previously used phantoms, and to evaluate the stability of the phantom and its potential as a tool for validating diffusion-weighted (DW) MRI measurements. METHODS Coaxial-electrospraying was used to generate micron-sized hollow polymer spheres, which mimic cells. The bulk structure was immersed in water, providing a DW-MRI phantom whose apparent diffusion coefficient (ADC) and microstructural properties were evaluated over a period of 10 months. Independent characterization of the phantom's microstructure was performed using scanning electron microscopy (SEM). The repeatability of the construction process was investigated by generating a second phantom, which underwent high resolution synchrotron-CT as well as SEM and MR scans. RESULTS ADC values were stable (coefficients of variation (CoVs) < 5%), and varied with diffusion time, with average values of 1.44 ± 0.03 µm2 /ms (Δ = 12 ms) and 1.20 ± 0.05 µm2 /ms (Δ = 45 ms). Microstructural parameters showed greater variability (CoVs up to 13%), with evidence of bias in sphere size estimates. Similar trends were observed in the second phantom. CONCLUSION A novel biomimetic phantom has been developed and shown to be stable over 10 months. It is envisaged that such phantoms will be used for further investigation of microstructural models relevant to characterizing tumor tissue, and may also find application in evaluating acquisition protocols and comparing DW-MRI-derived biomarkers obtained from different scanners at different sites. Magn Reson Med 80:147-158, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Damien J. McHugh
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterCambridge and ManchesterUK
| | - Feng‐Lei Zhou
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterCambridge and ManchesterUK
- The School of MaterialsThe University of ManchesterManchesterUK
| | - Ian Wimpenny
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUK
- The School of MaterialsThe University of ManchesterManchesterUK
| | | | - Josephine H. Naish
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUK
| | | | - Geoffrey J. M. Parker
- Division of Informatics, Imaging and Data SciencesThe University of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterCambridge and ManchesterUK
- Bioxydyn Ltd.ManchesterUK
| |
Collapse
|
14
|
Jiang X, Li H, Zhao P, Xie J, Khabele D, Xu J, Gore JC. Early Detection of Treatment-Induced Mitotic Arrest Using Temporal Diffusion Magnetic Resonance Spectroscopy. Neoplasia 2017; 18:387-97. [PMID: 27292027 PMCID: PMC4909704 DOI: 10.1016/j.neo.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 01/18/2023] Open
Abstract
PURPOSE: A novel quantitative magnetic resonance imaging (MRI) method, namely, temporal diffusion spectroscopy (TDS), was used to detect the response of tumor cells (notably, mitotic arrest) to a specific antimitotic treatment (Nab-paclitaxel) in culture and human ovarian xenografts and evaluated as an early imaging biomarker of tumor responsiveness. METHODS: TDS measures a series of apparent diffusion coefficients (ADCs) of tissue water over a range of effective diffusion times, which may correspond to diffusion distances ranging from subcellular to cellular levels (~ 3-20 μm). By fitting the measured ADC data to a tissue model, parameters reflecting structural properties such as restriction size in solid tumors can be extracted. Two types of human ovarian cell lines (OVCAR-8 as a responder to Nab-paclitaxel and NCI/ADR-RES as a resistant type) were treated with either vehicle (PBS) or Nab-paclitaxel, and treatment responses of both in vitro and in vivo cases were investigated using TDS. RESULTS: Acute cell size increases induced by Nab-paclitaxel in responding tumors were confirmed by flow cytometry and light microscopy in cell culture. Nab-paclitaxel–induced mitotic arrest in treated tumors/cells was quantified histologically by measuring the mitotic index in vivo using a mitosis-specific marker (anti-phosphohistone H3). Changes in the fitted restriction size, one of the parameters obtained from TDS, were able to detect and quantify increases in tumor cell sizes. All the MR results had a high degree of consistency with other flow, microscopy, and histological data. Moreover, with an appropriate analysis, the Nab-paclitaxel–responsive tumors in vivo could be easily distinguished from all the other vehicle-treated and Nab-paclitaxel–resistant tumors. CONCLUSION: TDS detects increases in cell sizes associated with antimitotic-therapy–induced mitotic arrest in solid tumors in vivo which occur before changes in tissue cellularity or conventional diffusion MRI metrics. By quantifying changes in cell size, TDS has the potential to improve the specificity of MRI methods in the evaluation of therapeutic response and enable a mechanistic understanding of therapy-induced changes in tumors.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Ping Zhao
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dineo Khabele
- Department of Obstetrics, Vanderbilt University, Nashville, TN 37232, USA; Department of Gynecology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics, Vanderbilt University, Nashville, TN 37232, USA; Department of Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics, Vanderbilt University, Nashville, TN 37232, USA; Department of Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
A comparative assessment of preclinical chemotherapeutic response of tumors using quantitative non-Gaussian diffusion MRI. Magn Reson Imaging 2016; 37:195-202. [PMID: 27919785 DOI: 10.1016/j.mri.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diffusion-weighted MRI (DWI) signal attenuation is often not mono-exponential (i.e. non-Gaussian diffusion) with stronger diffusion weighting. Several non-Gaussian diffusion models have been developed and may provide new information or higher sensitivity compared with the conventional apparent diffusion coefficient (ADC) method. However the relative merits of these models to detect tumor therapeutic response is not fully clear. METHODS Conventional ADC, and three widely-used non-Gaussian models, (bi-exponential, stretched exponential, and statistical model), were implemented and compared for assessing SW620 human colon cancer xenografts responding to barasertib, an agent known to induce apoptosis via polyploidy. Bayesian Information Criterion (BIC) was used for model selection among all three non-Gaussian models. RESULTS All of tumor volume, histology, conventional ADC, and three non-Gaussian DWI models could show significant differences between control and treatment groups after four days of treatment. However, only the non-Gaussian models detected significant changes after two days of treatment. For any treatment or control group, over 65.7% of tumor voxels indicate the bi-exponential model is strongly or very strongly preferred. CONCLUSION Non-Gaussian DWI model-derived biomarkers are capable of detecting tumor earlier chemotherapeutic response of tumors compared with conventional ADC and tumor volume. The bi-exponential model provides better fitting compared with statistical and stretched exponential models for the tumor and treatment models used in the current work.
Collapse
|
16
|
Wu D, Zhang J. The Effect of Microcirculatory Flow on Oscillating Gradient Diffusion MRI and Diffusion Encoding with Dual-Frequency Orthogonal Gradients (DEFOG). Magn Reson Med 2016; 77:1583-1592. [PMID: 27080566 DOI: 10.1002/mrm.26242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/28/2016] [Accepted: 03/28/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE We investigated the effect of microcirculatory flow on oscillating gradient spin echo (OGSE) diffusion MRI at low b-values and developed a diffusion preparation method called diffusion encoding with dual-frequency orthogonal gradients (DEFOG) to suppress the effect. METHODS Compared to conventional OGSE sequences, DEFOG adds a pulsed gradient that is orthogonal to the oscillating gradient and has a moderate diffusion weighting (e.g., 300 s/mm2 ). In vivo MRI data were acquired from adult mouse brains (n = 5) on an 11.7 Tesla scanner, with diffusion times from 23.2 to 0.83 ms and b-values from 50 to 700 s/mm2 . RESULTS Apparent diffusion coefficients (ADCs) measured using a conventional OGSE sequence at low b-values (< 200 mm2 /s) were significantly higher than those measured at moderate b-values (> 300 mm2 /s), potentially due to contributions from microcirculatory flow. In comparison, OGSE ADCs measured using the DEFOG method at low b-values were comparable to those measured at moderate b-values. The effect of microcirculatory flow on diffusion signals was diffusion time-dependent, and this dependency may reflect the capillary geometry and blood flow velocity in the mouse cortex. CONCLUSION Microcirculatory flow affects OGSE diffusion MRI measurements at low b-values, and this effect can be suppressed using the DEFOG method. Magn Reson Med 77:1583-1592, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
Xu J, Li H, Li K, Harkins KD, Jiang X, Xie J, Kang H, Dortch RD, Anderson AW, Does MD, Gore JC. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy. NMR IN BIOMEDICINE 2016; 29:400-410. [PMID: 27077155 PMCID: PMC4832578 DOI: 10.1002/nbm.3484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Li H, Jiang X, Wang F, Xu J, Gore JC. Structural information revealed by the dispersion of ADC with frequency. Magn Reson Imaging 2015; 33:1083-1090. [PMID: 26117695 DOI: 10.1016/j.mri.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/20/2015] [Indexed: 01/18/2023]
Abstract
Diffusion MRI provides a non-invasive means to characterize tissue microstructure at varying length scales. Temporal diffusion spectra reveal how the apparent diffusion coefficient (ADC) varies with frequency. When measured using oscillating gradient spin echo sequences, the manner in which ADC disperses with gradient frequency (which is related to the reciprocal of diffusion time) provides information on the characteristic dimensions of restricting structures within the medium. For example, the dispersion of ADC with oscillating gradient frequency (ΔfADC) has been shown to correlate with axon sizes in white matter and provide novel tissue contrast in images of mouse hippocampus and cerebellum. However, despite increasing interest in applying frequency-dependent ADC to derive novel information on tissue, the interpretations of ADC spectra are not always clear. In this study, the relation between ADC spectra and restricting dimensions are further elucidated and used to derive novel image contrast related to the sizes of intrinsic microstructures.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Li H, Jiang X, Xie J, McIntyre JO, Gore JC, Xu J. Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Measurements. Magn Reson Med 2015; 75:1927-34. [PMID: 26096552 DOI: 10.1002/mrm.25724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the influence of cell membrane permeability on diffusion measurements over a broad range of diffusion times. METHODS Human myelogenous leukemia K562 cells were cultured and treated with saponin to selectively alter cell membrane permeability, resulting in a broad physiologically relevant range of 0.011-0.044 μm/ms. Apparent diffusion coefficient (ADC) values were acquired with the effective diffusion time (Δeff ) ranging from 0.42 to 3000 ms. Cosine-modulated oscillating gradient spin echo (OGSE) measurements were performed to achieve short Δeff from 0.42 to 5 ms, while stimulated echo acquisitions were used to achieve long Δeff from 11 to 2999 ms. Computer simulations were also performed to support the experimental results. RESULTS Both computer simulations and experiments in vitro showed that the influence of membrane permeability on diffusion MR measurements is highly dependent on the choice of diffusion time, and it is negligible only when the diffusion time is at least one order of magnitude smaller than the intracellular exchange lifetime. CONCLUSION The influence of cell membrane permeability on the measured ADCs is negligible in OGSE measurements at moderately high frequencies. By contrast, cell membrane permeability has a significant influence on ADC and quantitative diffusion measurements at low frequencies such as those sampled using conventional pulsed gradient methods.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - J Oliver McIntyre
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Clayden JD, Nagy Z, Weiskopf N, Alexander DC, Clark CA. Microstructural parameter estimation in vivo using diffusion MRI and structured prior information. Magn Reson Med 2015; 75:1787-96. [PMID: 25994918 PMCID: PMC4791093 DOI: 10.1002/mrm.25723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/05/2022]
Abstract
Purpose Diffusion MRI has recently been used with detailed models to probe tissue microstructure. Much of this work has been performed ex vivo with powerful scanner hardware, to gain sensitivity to parameters such as axon radius. By contrast, performing microstructure imaging on clinical scanners is extremely challenging. Methods We use an optimized dual spin‐echo diffusion protocol, and a Bayesian fitting approach, to obtain reproducible contrast (histogram overlap of up to 92%) in estimated maps of axon radius index in healthy adults at a modest, widely‐available gradient strength (35 mT m
−1). A key innovation is the use of influential priors. Results We demonstrate that our priors can improve precision in axon radius estimates—a 7‐fold reduction in voxelwise coefficient of variation in vivo—without significant bias. Our results may reflect true axon radius differences between white matter regions, but this interpretation should be treated with caution due to the complexity of the tissue relative to our model. Conclusions Some sensitivity to relatively large axons (3–15 μm) may be available at clinical field and gradient strengths. Future applications at higher gradient strength will benefit from the favorable eddy current properties of the dual spin‐echo sequence, and greater precision available with suitable priors. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1787–1796, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
| | - Zoltan Nagy
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK.,Laboratory for Social and Neural Systems Research, University of Zurich, Zurich, Switzerland
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK
| | - Chris A Clark
- UCL Institute of Child Health, University College London, London, UK
| |
Collapse
|
21
|
Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med 2015; 75:1076-85. [PMID: 25845851 DOI: 10.1002/mrm.25684] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/15/2015] [Accepted: 02/11/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE A new approach has been developed to quantify cell sizes and intracellular volume fractions using temporal diffusion spectroscopy with diffusion-weighted acquisitions. METHODS Temporal diffusion spectra may be used to characterize tissue microstructure by measuring the effects of restrictions over a range of diffusion times. Oscillating gradients have been used previously to probe variations on cellular and subcellular scales, but their ability to accurately measure cell sizes larger than 10 μm is limited. By combining measurements made using oscillating gradient spin echo (OGSE) and a conventional pulsed gradient spin echo (PGSE) acquisition with a single, relatively long diffusion time, we can accurately quantify cell sizes and intracellular volume fractions. RESULTS Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes and intracellular volume fractions were obtained in vitro for (i) different cell types with sizes ranging from 10 to 20 μm, (ii) different cell densities, and (iii) before and after anticancer treatment. CONCLUSION Hybrid OGSE-PGSE acquisitions sample a larger region of temporal diffusion spectra and can accurately quantify cell sizes over a wide range. Moreover, the maximum gradient strength used was lower than 15 G/cm, suggesting that this approach is translatable to practical MR imaging.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ping Zhao
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Xu J, Li H, Harkins KD, Jiang X, Xie J, Kang H, Does MD, Gore JC. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy. Neuroimage 2014; 103:10-19. [PMID: 25225002 PMCID: PMC4312203 DOI: 10.1016/j.neuroimage.2014.09.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/01/2023] Open
Abstract
Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. >20ms, the sensitivity to small axons (diameter<2μm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1-5ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter of ~1.27-5.54μm). The estimated values were in good agreement with histology, including the small axon diameters (<2.5μm). This study establishes a framework for the quantification of nerve morphology using the OGSE method with high sensitivity to small axons.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA.
| | - Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin D Harkins
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med 2014; 72:1366-74. [PMID: 25168861 DOI: 10.1002/mrm.25441] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE We investigated whether oscillating gradient diffusion MRI (dMRI) can provide information on brain microstructural changes after formaldehyde fixation and after hypoxic-ischemic (HI) injury beyond that provided by conventional dMRI. METHODS Pulsed gradient spin echo (PGSE) and oscillating gradient spin echo (OGSE) dMRI of the adult mouse brain was performed in vivo (50-200 Hz, b = 600 mm(2)/s), and a similar protocol was applied to neonatal mouse brains at 24 h after unilateral hypoxia-ischemia. Animals were perfusion fixed with 4% paraformaldehyde for ex vivo dMRI and histology. RESULTS Apparent diffusion coefficients (ADCs) measured in the live adult mouse brain presented tissue-dependent frequency-dependence. In vivo OGSE-ADC maps at high oscillating frequencies (>100 Hz) showed clear contrast between the molecular layer and granule cell layer in the adult mouse cerebellum. Formaldehyde fixation significantly altered the temporal diffusion spectra in several brain regions. In neonatal mouse brains with HI injury, in vivo ADC measurements from edema regions showed diminished edema contrasts at 200 Hz compared with the PGSE results. Histology showed severe tissue swelling and necrosis in the edema regions. CONCLUSION The results demonstrate the unique ability of OGSE-dMRI in delineating tissue microstructures at different spatial scales.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
24
|
Li H, Gore JC, Xu J. Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:4-9. [PMID: 24583517 PMCID: PMC4008665 DOI: 10.1016/j.jmr.2014.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 05/22/2023]
Abstract
Mapping axon sizes non-invasively is of interest for neuroscientists and may have significant clinical potential because nerve conduction velocity is directly dependent on axon size. Current approaches to measuring axon sizes using diffusion-weighted MRI, e.g. q-space imaging with pulsed gradient spin echo (PGSE) sequences usually require long scan times and high q-values to detect small axons (diameter <2μm). The oscillating gradient spin echo (OGSE) method has been shown to be able to achieve very short diffusion times and hence may be able to detect smaller axons with high sensitivity. In the current study, OGSE experiments were performed to measure the inner diameters of hollow microcapillaries with a range of sizes (∼1.5-19.3μm) that mimic axons in the human central nervous system. The results suggest that OGSE measurements, even with only moderately high frequencies, are highly sensitive to compartment sizes, and a minimum of two ADC values with different frequencies may be sufficient to extract the microcapillary size accurately. This suggests that the OGSE method may serve as a fast and robust measurement method for mapping axon sizes non-invasively.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
White NS, Dale AM. Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumors. Magn Reson Med 2013; 72:1435-43. [PMID: 24357182 DOI: 10.1002/mrm.25039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/02/2013] [Accepted: 10/20/2013] [Indexed: 01/26/2023]
Abstract
PURPOSE While many recent studies have demonstrated improved detection and characterization of malignant lesions using high b-value diffusion imaging techniques, little is known about the underlying physical characteristics of tumor cells that modulate the restricted water signal at high b on clinical scanners. METHODS Monte Carlo simulations of diffusion in a synthetic tumor cell environment were used to study the specific effects of tumor cell diameter and nuclear volume fraction (ν) on high b diffusion contrast. RESULTS Results indicate that clinical pulsed-gradient spin-echo diffusion-weighted signals measured at high b (∼4000 s/mm(2)), long diffusion time (Δ ∼40-60 ms), and long echo time (TE ∼60-140 ms) are generally insensitive to tumor cell diameter, but increase exponentially with ν. Moreover, these results are predicted by a simple analytic expression for the intracellular restricted water signal with elevated T2 for the intranuclear versus cytosolic compartment. CONCLUSION Nuclear volume fraction is an important characteristic of cancer cells that modulates the apparent restriction of water at high b on clinical scanners. This model offers a possible explanation for the apparent unreliable correlation between tumor cell density (cellularity) and traditional ADC.
Collapse
Affiliation(s)
- Nathan S White
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
26
|
Bourne RM, Panagiotaki E, Bongers A, Sved P, Watson G, Alexander DC. Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo. Magn Reson Med 2013; 72:1418-26. [DOI: 10.1002/mrm.25032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Roger M. Bourne
- Roger Bourne; Discipline of Medical Radiation Sciences; Faculty of Health Sciences; University of Sydney; Lidcombe Australia
| | - Eleftheria Panagiotaki
- Centre for Medical Image Computing; Department of Computer Science; University College London; London UK
| | - Andre Bongers
- Biomedical Imaging Resources Laboratory; University of New South Wales; Sydney Australia
| | - Paul Sved
- Department of Tissue Pathology and Diagnostic Oncology; Royal Prince Alfred Hospital; Sydney Australia
| | - Geoffrey Watson
- Department of Surgery; Faculty of Medicine; University of Sydney; Sydney Australia
| | - Daniel C. Alexander
- Centre for Medical Image Computing; Department of Computer Science; University College London; London UK
| |
Collapse
|
27
|
Shemesh N, Álvarez GA, Frydman L. Measuring small compartment dimensions by probing diffusion dynamics via Non-uniform Oscillating-Gradient Spin-Echo (NOGSE) NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:49-62. [PMID: 24140623 DOI: 10.1016/j.jmr.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 05/22/2023]
Abstract
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gonzalo A Álvarez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Baron CA, Beaulieu C. Oscillating gradient spin-echo (OGSE) diffusion tensor imaging of the human brain. Magn Reson Med 2013; 72:726-36. [DOI: 10.1002/mrm.24987] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/24/2013] [Accepted: 09/15/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Corey A. Baron
- Department of Biomedical Engineering; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
29
|
Sukstanskii AL. Exact analytical results for ADC with oscillating diffusion sensitizing gradients. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:135-40. [PMID: 23876779 PMCID: PMC3771359 DOI: 10.1016/j.jmr.2013.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 05/15/2023]
Abstract
The apparent diffusion coefficient (ADC) is analyzed for the case of oscillating diffusion sensitizing gradients. Exact analytical expressions are obtained in the high-frequency expansion of the ADC for an arbitrary number of oscillations N. These expressions are universal and valid for arbitrary system geometry. The validity conditions of the high-frequency expansion of ADC are obtained in the framework of a simple 1D model of restricted diffusion. These conditions are shown to be substantially different for cos- and sin-type gradients: for the cos-type gradients, the high-frequency expansion is valid when the period of a single oscillation is smaller than the characteristic diffusion time, the frequency dependence of ADC being practically the same for any N. In contrast, for the sin-type gradients, the high-frequency regime can be achieved only when the total diffusion time is smaller than the characteristic diffusion time, the frequency dependence of ADC being different for different N.
Collapse
Affiliation(s)
- A L Sukstanskii
- Department of Radiology, Washington University, St. Louis, Missouri 63110, USA.
| |
Collapse
|
30
|
Feindel KW. Can we develop pathology-specific MRI contrast for "MR-negative" epilepsy? Epilepsia 2013; 54 Suppl 2:71-4. [PMID: 23646976 DOI: 10.1111/epi.12189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent improvements in magnetic resonance imaging (MRI) hardware, software, and analysis routines are helping to put cases of "MR-negative" epilepsy on the decline. However, most standard-of-care MRI relies on careful manipulation and presentation of T1, T2, and diffusion-weighted contrast, which characterize the behavior of water in "bulk" tissue rather than providing pathology-specific contrast. Research efforts in MR physics continue to identify and develop novel theory, and methods such as diffusional kurtosis imaging (DKI) and temporal diffusion spectroscopy that can better characterize tissue substructure, and chemical exchange saturation transfer (CEST) that can target underlying biochemical processes. The potential role of each technique in targeting pathologies implicated in "MR-negative" epilepsy is outlined herein.
Collapse
Affiliation(s)
- Kirk W Feindel
- School of Biomedical Engineering & Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
31
|
ESR statement on the stepwise development of imaging biomarkers. Insights Imaging 2013; 4:147-52. [PMID: 23397519 PMCID: PMC3609959 DOI: 10.1007/s13244-013-0220-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 12/19/2022] Open
Abstract
Development of imaging biomarkers is a structured process in which new biomarkers are discovered, verified, validated and qualified against biological processes and clinical end-points. The validation process not only concerns the determination of the sensitivity and specificity but also the measurement of reproducibility. Reproducibility assessments and standardisation of the acquisition and data analysis methods are crucial when imaging biomarkers are used in multicentre trials for assessing response to treatment. Quality control in multicentre trials can be performed with the use of imaging phantoms. The cost-effectiveness of imaging biomarkers also needs to be determined. A lot of imaging biomarkers are being developed, but there are still unmet needs—for example, in the detection of tumour invasiveness. Main Messages • Using imaging biomarkers to streamline drug discovery and disease progression is a huge advancement in healthcare. • The qualification and technical validation of imaging biomarkers pose unique challenges in that the accuracy, methods, standardisations and reproducibility are strictly monitored. • The clinical value of new biomarkers is of the highest priority in terms of patient management, assessing risk factors and disease prognosis.
Collapse
|
32
|
Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy. PLoS One 2012; 7:e41714. [PMID: 22911846 PMCID: PMC3404000 DOI: 10.1371/journal.pone.0041714] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/26/2012] [Indexed: 01/22/2023] Open
Abstract
Measurements of apparent diffusion coefficient (ADC) using magnetic resonance imaging (MRI) have been suggested as potential imaging biomarkers for monitoring tumor response to treatment. However, conventional pulsed-gradient spin echo (PGSE) methods incorporate relatively long diffusion times, and are usually sensitive to changes in cell density and necrosis. Diffusion temporal spectroscopy using the oscillating gradient spin echo (OGSE) sequence is capable of probing short length scales, and may detect significant intracellular microstructural changes independent of gross cell density changes following anti-cancer treatment. To test this hypothesis, SW620 xenografts were treated by barasertib (AZD1152), a selective inhibitor of Aurora B kinase which causes SW620 cancer cells to develop polyploidy and increase in size following treatment, ultimately leading to cell death through apoptosis. Following treatment, the ADC values obtained by both the PGSE and low frequency OGSE methods increased. However, the ADC values at high gradient frequency (i.e. short diffusion times) were significantly lower in treated tumors, consistent with increased intracellular restrictions/hindrances. This suggests that ADC values at long diffusion times are dominated by tumor microstructure at long length scales, and may not convey unambiguous information of subcellular space. While the diffusion temporal spectroscopy provides more comprehensive means to probe tumor microstructure at various length scales. This work is the first study to probe intracellular microstructural variations due to polyploidy following treatment using diffusion MRI in vivo. It is also the first observation of post-treatment ADC changes occurring in opposite directions at short and long diffusion times. The current study suggests that temporal diffusion spectroscopy potentially provides pharmacodynamic biomarkers of tumor early response which distinguish microstructural variations following treatment at both the subcellular and supracellular length scales.
Collapse
|
33
|
Portnoy S, Flint JJ, Blackband SJ, Stanisz GJ. Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b-value range: implications for the characterization of tissue microstructure. Magn Reson Med 2012; 69:1131-45. [PMID: 22576352 DOI: 10.1002/mrm.24325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/09/2022]
Abstract
Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues.
Collapse
Affiliation(s)
- S Portnoy
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|