1
|
Ogawa S, Takemura H, Horiguchi H, Miyazaki A, Matsumoto K, Masuda Y, Yoshikawa K, Nakano T. Multi-Contrast Magnetic Resonance Imaging of Visual White Matter Pathways in Patients With Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 35201263 PMCID: PMC8883150 DOI: 10.1167/iovs.63.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a disorder that involves visual field loss caused by retinal ganglion cell damage. Previous diffusion magnetic resonance imaging (dMRI) studies have demonstrated that retinal ganglion cell damage affects tissues in the optic tract (OT) and optic radiation (OR). However, because previous studies have used a simple diffusion tensor model to analyze dMRI data, the microstructural interpretation of white matter tissue changes remains uncertain. In this study, we used a multi-contrast MRI approach to further clarify the type of microstructural damage that occurs in patients with glaucoma. Methods We collected dMRI data from 17 patients with glaucoma and 30 controls using 3-tesla (3T) MRI. Using the dMRI data, we estimated three types of tissue property metrics: intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (IsoV). Quantitative T1 (qT1) data, which may be relatively specific to myelin, were collected from all subjects. Results In the OT, all four metrics showed significant differences between the glaucoma and control groups. In the OR, only the ICVF showed significant between-group differences. ICVF was significantly correlated with qT1 in the OR of the glaucoma group, although qT1 did not show any abnormality at the group level. Conclusions Our results suggest that, at the group level, tissue changes in OR caused by glaucoma might be explained by axonal damage, which is reflected in the intracellular diffusion signals, rather than myelin damage. The significant correlation between ICVF and qT1 suggests that myelin damage might also occur in a smaller number of severe cases.
Collapse
Affiliation(s)
- Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiji Yoshikawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Yoshikawa Eye Clinic, Machida, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Nuzzi R, Vitale A. Cerebral Modifications in Glaucoma and Macular Degeneration: Analysis of Current Evidence in Literature and Their Implications on Therapeutic Perspectives. Eye Brain 2021; 13:159-173. [PMID: 34168513 PMCID: PMC8216745 DOI: 10.2147/eb.s307551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Glaucoma and macular degeneration are leading causes of irreversible blindness, significantly compromising the quality of life and having a high economic and social impact. Promising therapeutic approaches aimed at regenerating or bypassing the damaged anatomical-functional components are currently under development: these approaches have generated great expectations, but to be effective require a visual network that, despite the pathology, maintains its integrity up to the higher brain areas. In the light of this, the existing findings concerning how the central nervous system modifies its connections following the pathological damage caused by glaucoma and macular degeneration acquire great interest. This review aims to examine the scientific literature concerning the morphological and functional changes affecting the central nervous system in these pathological conditions, summarizing the evidence in an analytical way, discussing their possible causes and highlighting the potential repercussions on the current therapeutic perspectives.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Vitale
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
3
|
Beykin G, Norcia AM, Srinivasan VJ, Dubra A, Goldberg JL. Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 2020; 80:100875. [PMID: 32659431 DOI: 10.1016/j.preteyeres.2020.100875] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Glaucoma and other optic neuropathies are characterized by progressive dysfunction and loss of retinal ganglion cells and their axons. Given the high prevalence of glaucoma-related blindness and the availability of treatment options, improving the diagnosis and precise monitoring of progression in these conditions is paramount. Here we review recent progress in the development of novel biomarkers for glaucoma in the context of disease pathophysiology and we propose future steps for the field, including integration of exploratory biomarker outcomes into prospective therapeutic trials. We anticipate that, when validated, some of the novel glaucoma biomarkers discussed here will prove useful for clinical diagnosis and prediction of progression, as well as monitoring of clinical responses to standard and investigational therapies.
Collapse
Affiliation(s)
- Gala Beykin
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 96817, USA.
| | - Alfredo Dubra
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| |
Collapse
|
4
|
Song XY, Puyang Z, Chen AH, Zhao J, Li XJ, Chen YY, Tang WJ, Zhang YY. Diffusion Tensor Imaging Detects Microstructural Differences of Visual Pathway in Patients With Primary Open-Angle Glaucoma and Ocular Hypertension. Front Hum Neurosci 2018; 12:426. [PMID: 30459581 PMCID: PMC6232882 DOI: 10.3389/fnhum.2018.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/01/2018] [Indexed: 02/01/2023] Open
Abstract
Ocular hypertension (OHT), the common situation in adult patients in the outpatients, occurs ∼5% worldwide. However, there are still some practical problems in differentiation of OHT with early primary open-angle glaucoma (POAG) using current standard methods. Application of high resolution diffusion tensor imaging (DTI) enables us to the differentiate axonal architecture of visual pathway between POAG and OHT subjects. Among 32 POAG patients recruited (15 OHT and 14 control subjects), 62.5% of glaucoma were in early stage for the current study. All subjects underwent ophthalmological assessments with standard automated perimetry and optical coherence tomography (OCT). DTI was applied to measure fraction anisotropy (FA) and mean diffusivity (MD) of optic tract (OT), lateral geniculate body (LGN) and optic radiation (OR) using voxel-based analysis. Our data demonstrated that FA values of bilateral OR in POAG were significantly lower in the right or left than that of OHT patients (left OR: 0.51 ± 0.04 vs. 0.54 ± 0.03, p < 0.05; right OR: 0.51 ± 0.05 vs. 0.54 ± 0.03, p < 0.05). In right LGN, MD values were higher in POAG patients compared with OHT subjects (9.81 ± 1.45 vs. 8.23 ± 0.62, p < 0.05). However, no significant difference of all of the DTI parameters was observed between OHT and control subjects. DTI parameters in POAG patients were positively correlated with morphological and functional measurements (p < 0.05). Vertical cup to disc ratio (VCDR) was correlated with ipsilateral FA of OT (p < 0.05), ipsilateral MD of OT (p < 0.05), ipsilateral MD of LGN (p < 0.05), and contralateral MD of OT (p < 0.05). Mean deviation of visual field (MDVF) was correlated with ipsilateral FA of OT (p < 0.05), ipsilateral MD of OT (p < 0.05), and ipsilateral FA of LGN (p < 0.05). Our study demonstrated that DTI can differentiate POAG from OHT subjects in optic pathway, particularly in early POAG, and DTI parameters can quantify the progression of POAG.
Collapse
Affiliation(s)
- Xiang-Yuan Song
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Puyang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Ai-Hua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Jin Zhao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Jiao Li
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya-Ying Chen
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Jun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Nuzzi R, Dallorto L, Rolle T. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review. Front Neurosci 2018; 12:363. [PMID: 29896087 PMCID: PMC5986964 DOI: 10.3389/fnins.2018.00363] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Torino, Turin, Italy
| | - Laura Dallorto
- Eye Clinic, Department of Surgical Sciences, University of Torino, Turin, Italy
| | - Teresa Rolle
- Eye Clinic, Department of Surgical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 2018; 8:4643. [PMID: 29545576 PMCID: PMC5854610 DOI: 10.1038/s41598-018-22850-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice. Vitreous body elongation and visuomotor function deterioration were observed until 9 months old, whereas axial diffusivity only decreased at 12 months old in diffusion tensor MRI. Under the same experimental settings, C57BL/6J mice only showed modest age-related changes. Taken together, these results indicate that the anterior and posterior visual pathways of the DBA/2J mice exhibit differential susceptibility to glaucomatous neurodegeneration observable by in vivo multi-modal examinations.
Collapse
|
7
|
Engelhorn T, A Schmidt M, Dörfler A, Michelson G. [Diffusion tensor imaging of the visual pathway in glaucomatous optic nerve atrophy]. Ophthalmologe 2017; 114:906-921. [PMID: 28251307 DOI: 10.1007/s00347-017-0467-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In Germany more than one million inhabitants suffer from glaucoma, more than 100,000 are threatened with blindness because glaucoma is often diagnosed too late or not at all. Diagnosis and monitoring is usually carried out "only" by examination of the retina and not the whole visual pathway. However, the eye is just "the tip of the iceberg" of the actual visual pathway, which extends through the brain to the visual cortex. The interdisciplinary holistic assessment of the whole visual pathway in glaucoma is of crucial importance because glaucoma is a complex neurodegenerative disease. Subtypes, such as normal tension glaucoma (NTG), seem to originate from primary damage to the intracranial visual pathway with secondary retrograde retinal degeneration. Recent studies including glaucoma patients and healthy controls could show that diffusion tensor imaging with calculation of diffusion coefficients, i.e. fractional anisotropy (FA), mean and radial diffusivity (MD and RD) as markers of axonal integrity, provide the potential to assess the intracranial visual pathway with a high correlation to established ophthalmological examinations. In particular, calculation of FA maps of the visual pathway and accompanying voxel-based approaches, can be integrated into clinical routine. Thus, detection of glaucoma-related intracranial alterations, even in early stages of the disease, as well as differentiation of different glaucoma subtypes, is made possible. Furthermore, the diagnosis of normal tension glaucoma seems to be possible much earlier with these new imaging techniques compared to established ophthalmological work-up. Moreover, holistic imaging provides new insights into the pathophysiology of this form of glaucoma. This review article gives an overview of these novel magnetic resonance imaging techniques for assessment of the visual pathway in glaucomatous optic nerve atrophy and reveals the potential of an interdisciplinary approach.
Collapse
Affiliation(s)
- T Engelhorn
- Neuroradiologische Abteilung, Schwabachanlage 6 (Kopfklinik), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Deutschland.
| | - M A Schmidt
- Neuroradiologische Abteilung, Schwabachanlage 6 (Kopfklinik), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Deutschland
| | - A Dörfler
- Neuroradiologische Abteilung, Schwabachanlage 6 (Kopfklinik), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Deutschland
| | - G Michelson
- Klinik für Augenheilkunde, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Deutschland
| |
Collapse
|
8
|
Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep 2016; 6:31464. [PMID: 27510406 PMCID: PMC4980591 DOI: 10.1038/srep31464] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew C Murphy
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA
| | - Ian P Conner
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Cindy Y Teng
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesse D Lawrence
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zaid Safiullah
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Frezzotti P, Giorgio A, Toto F, De Leucio A, De Stefano N. Early changes of brain connectivity in primary open angle glaucoma. Hum Brain Mapp 2016; 37:4581-4596. [PMID: 27503699 DOI: 10.1002/hbm.23330] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/05/2022] Open
Abstract
Our aim was to assess in primary open angle glaucoma (POAG), a major cause of irreversible blindness worldwide, whether diffuse brain changes recently shown in advanced stage can be detected since the early stage. We used multimodal magnetic resonance imaging (MRI) in 57 patients with the three POAG stages and in 29 age-matched normal controls (NC). Voxelwise statistics was performed with nonparametric permutation testing. Compared with NC, disrupted anatomical connectivity (AC) was found in the whole POAG group along the visual pathway and in nonvisual white matter tracts (P < 0.001). Moreover, POAG patients showed decreased functional connectivity (FC) in the visual (P = 0.004) and working memory (P < 0.001) networks whereas an increase occurred in the default mode (P = 0.002) and subcortical (P < 0.001) networks. Altered AC and FC were already present in early POAG (n = 14) in both visual and nonvisual systems (P ≤ 0.01). Only severe POAG (n = 30) showed gray matter atrophy and this mapped on visual cortex (P < 0.001) and hippocampus (P < 0.001). Increasing POAG stage was associated with worsening AC in both visual and nonvisual pathway (P < 0.001), progressive atrophy in the hippocampus and frontal cortex (P < 0.003). Most of the structural and functional alterations within and outside the visual system showed correlation (P < 0.001 to 0.02) with computerized visual field and retinal nerve fiber layer thickness. In conclusion, the complex pathogenesis of POAG includes widespread damage of AC and altered FC within and beyond the visual system since the early disease stage. The association of brain MRI changes with measures of visual severity emphasizes the clinical relevance of our findings. Hum Brain Mapp 37:4581-4596, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Frezzotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesca Toto
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro De Leucio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Erichev VP, Panyushkina LA, Novikov IA, Bryukhov VV. [Diffusion tensor magnetic resonance imaging in the diagnosis of visual pathway neurodegeneration in glaucoma]. Vestn Oftalmol 2015; 131:59-63. [PMID: 26080584 DOI: 10.17116/oftalma2015131259-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the state of visual pathways in patients with glaucoma by means of diffusion tensor magnetic resonance imaging (DT-MRI). MATERIAL AND METHODS DT-MRI was performed in 16 patients: 12 patients with POAG of different stages and 4 controls. Fractional anisotropy (FA) and its longitudinal variation (FA) determined by an original software (Fractional Anisotropy Analyzer) were used to assess the state of the lateral geniculate body and optic radiation. All patients also underwent optical coherence tomography (OCT) of the retina and optic nerve head, Heindelberg retinal tomography (HRT), and Humphrey standard automated perimetry (SAP). RESULTS There was a significant decrease in FA values in glaucoma patients as compared with the control group (medians of 0.74 and 0.77 respectively, p < 0.01). Moderate and strong correlations of AFA with glaucoma stage as well as morphometric (GCC Average, GLV, FLV, and RNFL Average provided by OCT, rim area provided by HRT) and functional parameters (MD and PSD provided by SAP) of the retina and optic nerve head were also established. CONCLUSION Reduced fractional anisotropy of the lateral geniculate body and optic radiation in patients with glaucoma may be considered an indicator of axonal degeneration at the level of the visual centers. DT-MRI in vivo helps to determine whether or not the neurodegenerative process spreads to the central nervous system as glaucoma progresses.
Collapse
Affiliation(s)
- V P Erichev
- Research Institute of Eye Diseases, 11 A, B Rossolimo St., Moscow, Russian Federation, 119021
| | - L A Panyushkina
- Research Institute of Eye Diseases, 11 A, B Rossolimo St., Moscow, Russian Federation, 119021
| | - I A Novikov
- Research Institute of Eye Diseases, 11 A, B Rossolimo St., Moscow, Russian Federation, 119021
| | - V V Bryukhov
- Research Centre of Neurology, 80 Volokolamskoe Shosse, Moscow, Russian Federation, 125367
| |
Collapse
|
11
|
Brain imaging in glaucoma from clinical studies to clinical practice. PROGRESS IN BRAIN RESEARCH 2015; 221:159-75. [DOI: 10.1016/bs.pbr.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Frezzotti P, Giorgio A, Motolese I, De Leucio A, Iester M, Motolese E, Federico A, De Stefano N. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. PLoS One 2014; 9:e105931. [PMID: 25162716 PMCID: PMC4146554 DOI: 10.1371/journal.pone.0105931] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.
Collapse
Affiliation(s)
- Paolo Frezzotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ilaria Motolese
- Department of Ophthalmology, University of Genoa, Genoa, Italy
| | - Alessandro De Leucio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Michele Iester
- Department of Ophthalmology, University of Genoa, Genoa, Italy
| | - Eduardo Motolese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
13
|
Alvarez I, Schwarzkopf DS, Clark CA. Extrastriate projections in human optic radiation revealed by fMRI-informed tractography. Brain Struct Funct 2014; 220:2519-32. [PMID: 24903826 PMCID: PMC4549382 DOI: 10.1007/s00429-014-0799-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
Abstract
The human optic radiation (OR) is the main pathway for conveying visual input to occipital cortex, but it is unclear whether it projects beyond primary visual cortex (V1). In this study, we used functional MRI mapping to delineate early visual areas in 30 healthy volunteers and determined the termination area of the OR as reconstructed with diffusion tractography. Direct thalamo-cortical projections to areas V2 and V3 were found in all hemispheres tested, with a distinct anatomical arrangement of superior–inferior fiber placement for dorsal and ventral projections, respectively, and a medio-lateral nesting arrangement for projections to V1, V2 and V3. Finally, segment-specific microstructure was examined, revealing sub-fascicular information. This is to date the first in vivo demonstration of direct extrastriate projections of the OR in humans.
Collapse
Affiliation(s)
- Ivan Alvarez
- Institute of Child Health, University College London, London, WC1N 1EH, UK,
| | | | | |
Collapse
|
14
|
Li K, Lu C, Huang Y, Yuan L, Zeng D, Wu K. Alteration of fractional anisotropy and mean diffusivity in glaucoma: novel results of a meta-analysis of diffusion tensor imaging studies. PLoS One 2014; 9:e97445. [PMID: 24828063 PMCID: PMC4020845 DOI: 10.1371/journal.pone.0097445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES We hypothesized that a meta-analysis of existing studies may help to reveal significant changes on diffusion tensor imaging (DTI) in patients with glaucoma. Therefore, a meta-analysis was utilized to investigate the possibility that DTI can detect white matter damage in patients with glaucoma. METHODS The study design and report adhered to the PRISMA Statement guidelines. DTI studies that compared glaucoma patients and controls were surveyed using PubMed, Web of Science and EMBASE (January 2008 to September 2013). Stata was used to analyze the decrease in fractional anisotropy (FA) and increase in mean diffusivity (MD) in the optic nerve and optic radiation in patients with glaucoma. RESULTS Eleven DTI studies were identified through a comprehensive literature search, and 10 independent DTI studies of glaucoma patients were eligible for the meta-analysis. A random effects model revealed a significant FA reduction in the optic nerve and optic radiation, as well as a significant MD increase in the tracts. A heterogeneity analysis suggested that FA may be related to glaucoma severity. CONCLUSIONS Our findings revealed that the optic nerve and optic radiation were vulnerable regions in patients with glaucoma and that FA may be correlated with glaucoma severity and age. Furthermore, this study suggests that magnetic resonance imaging in patients with glaucoma may help to provide objective evidence to aid in the diagnosis and management of glaucoma.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cuixin Lu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufei Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Zeng
- Key Laboratory for NeuroInformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kan Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Lee DH, Park JW, Hong CP. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography. Neural Regen Res 2014; 9:280-4. [PMID: 25206813 PMCID: PMC4146140 DOI: 10.4103/1673-5374.128223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 11/29/2022] Open
Abstract
To attain the volumetric information of the optic radiation in normal human brains, we performed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation fiber tract volume was a range of about 0.16% and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability fiber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are helpful in the study of optic radiation fiber tract information.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea ; Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Republic of Korea
| | - Ji-Won Park
- Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Daegu, Republic of Korea
| | - Cheol-Pyo Hong
- Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| |
Collapse
|
16
|
El-Rafei A, Engelhorn T, Wärntges S, Dörfler A, Hornegger J, Michelson G. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging 2013; 31:1081-91. [DOI: 10.1016/j.mri.2013.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/09/2012] [Accepted: 01/13/2013] [Indexed: 11/30/2022]
|
17
|
Yin D, Yan X, Fan M, Hu Y, Men W, Sun L, Song F. Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function. AJNR Am J Neuroradiol 2013; 34:1341-7. [PMID: 23391838 DOI: 10.3174/ajnr.a3410] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Secondary degeneration of the pyramidal tract after focal motor pathway stroke has been observed by diffusion tensor imaging. However, the relationships between outcomes in hand function and secondary degeneration in widespread regions are not well understood. For the first time, we investigated the differences of secondary degeneration across the whole brain between subgroups of patients with stroke. MATERIALS AND METHODS We selected 23 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into 2 subgroups: CPH (11 patients) and PPH (12 patients). Twelve healthy controls matched for age and handedness were also recruited. We used both optimized VBM and TBSS to explore differences of FA across the whole brain between CPH and PPH. Furthermore, ROI analysis was carried out in the identified regions detected by VBM analysis to further quantify the degree of secondary degeneration in the CPH and PPH and compare these with healthy controls. RESULTS Compared with PPH, FA was significantly decreased in the CPH in widespread regions of the motor system remote from the primary lesion, including the ipsilesional brain stem, medial frontal gyrus, precentral gyrus, superior temporal gyrus, supplementary motor area, and contralesional postcentral gyrus. In addition, FA within these identified regions correlated with Fugl-Meyer Assessment scores (hand+wrist). CONCLUSIONS This study suggests a potential biomarker for outcome differences in hand function after subcortical stroke.
Collapse
Affiliation(s)
- D Yin
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Hayashi T, Shimazawa M, Watabe H, Ose T, Inokuchi Y, Ito Y, Yamanaka H, Urayama SI, Watanabe Y, Hara H, Onoe H. Kinetics of neurodegeneration based on a risk-related biomarker in animal model of glaucoma. Mol Neurodegener 2013; 8:4. [PMID: 23331478 PMCID: PMC3599096 DOI: 10.1186/1750-1326-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 01/04/2013] [Indexed: 01/12/2023] Open
Abstract
Background Neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases progress slowly and steadily over years or decades. They show significant between-subject variation in progress and clinical symptoms, which makes it difficult to predict the course of long-term disease progression with or without treatments. Recent technical advances in biomarkers have facilitated earlier, preclinical diagnoses of neurodegeneration by measuring or imaging molecules linked to pathogenesis. However, there is no established “biomarker model” by which one can quantitatively predict the progress of neurodegeneration. Here, we show predictability of a model with risk-based kinetics of neurodegeneration, whereby neurodegeneration proceeds as probabilistic events depending on the risk. Results We used five experimental glaucomatous animals, known for causality between the increased intraocular pressure (IOP) and neurodegeneration of visual pathways, and repeatedly measured IOP as well as white matter integrity by diffusion tensor imaging (DTI) as a biomarker of axonal degeneration. The IOP in the glaucomatous eye was significantly increased than in normal and was varied across time and animals; thus we tested whether this measurement is useful to predict kinetics of the integrity. Among four kinds of models of neurodegeneration, constant-rate, constant-risk, variable-risk and heterogeneity models, goodness of fit of the model and F-test for model selection showed that the time course of optic nerve integrity was best explained by the variable-risk model, wherein neurodegeneration kinetics is expressed in an exponential function across cumulative risk based on measured IOP. The heterogeneity model with stretched exponential decay function also fit well to the data, but without statistical superiority to the variable-risk model. The variable-risk model also predicted the number of viable axons in the optic nerve, as assessed by immunohistochemistry, which was also confirmed to be correlated with the pre-mortem integrity of the optic nerve. In addition, the variable-risk model identified the disintegrity in the higher-order visual pathways, known to underlie the transsynaptic degeneration in this disease. Conclusions These findings indicate that the variable-risk model, using a risk-related biomarker, could predict the spatiotemporal progression of neurodegeneration. This model, virtually equivalent to survival analysis, may allow us to estimate possible effect of neuroprotection in delaying progress of neurodegeneration.
Collapse
Affiliation(s)
- Takuya Hayashi
- Functional Probe Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Hyogo, 650-0047, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology 2012; 55:233-43. [PMID: 23223846 DOI: 10.1007/s00234-012-1122-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Glaucoma is the second leading cause of blindness worldwide. The purpose of this study is to identify areas of neurodegeneration in glaucoma utilizing 3 T magnetic resonance (MR) diffusion tensor imaging (DTI) parameters with whole-brain voxel-based analysis (VBA) and determine whether these parameters correlate with disease severity. METHODS Twenty-five glaucoma patients and 25 age-matched healthy volunteers were prospectively examined. Clinical glaucoma severity was assessed utilizing static threshold visual field parameters. All subjects underwent 3 T MRI utilizing a DTI sequence (repetition time/echo time 13,000/68.9 ms, maximal b value 800 s/mm(2) along 30 directions) and an anatomic sequence to provide structural information. All data sets were processed by VBA. Brain fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were compared in the two groups. Correlation between DTI parameters and glaucoma stage were determined. RESULTS The bilateral optic radiations and chiasma of glaucoma patients demonstrated statistically significantly lower fractional anisotropy (p < 0.05). Optic radiation RD was similarly decreased in glaucoma patients (p < 0.05). There were no statistically significant differences noted in MD or AD between the two groups (p > 0.05). Optic chiasm fractional anisotropy values were negatively correlated with glaucoma stage (r = -0.53, p < 0.05) and optic radiation RD values positively correlated (left r = 0.45, p < 0.05; right = 0.38, p = 0.06). CONCLUSION DTI parameters fractional anisotropy and RD are altered in the optic chiasm and radiations of glaucoma patients. As fractional anisotropy and RD also correlate with glaucoma stage, these values could serve as potential noninvasive markers of disease severity.
Collapse
|
20
|
Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J, Zhang H. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Exp Ophthalmol 2012; 41:43-9. [PMID: 22712443 DOI: 10.1111/j.1442-9071.2012.02832.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate nerve fibre damage of the visual pathway in patients with primary open-angle glaucoma using tract-based spatial statistical analysis of diffusion tensor imaging and correlate these measures with the clinical severity of glaucoma. DESIGN Cross-sectional study. PARTICIPANTS Twenty-five individuals with primary open-angle glaucoma and 24 healthy controls were recruited. METHODS All subjects underwent detailed ophthalmological examinations, including the cup-to-disc ratio, retinal nerve fibre layer thickness and visual fields test. Diffusion tensor imaging of the visual pathway was performed using a 3.0-T magnetic resonance scanner. MAIN OUTCOME MEASURES Diffusivity changes of the nerve fibres in the visual pathway were calculated through tract-based spatial statistical analysis. The mean diffusivity and fractional anisotropy were assessed and compared with ophthalmological measurements. RESULTS Compared with controls, bilateral optic tracts and optic radiations in primary open-angle glaucoma patients showed significantly decreased fractional anisotropy and increased mean diffusivity (P < 0.05). In the glaucoma group, the fractional anisotropy of the optic tracts and optic radiations varied consistently with the cup-to-disc ratio, retinal nerve fibre layer thickness and visual function analysis, respectively (P < 0.05). The mean diffusivity of the optic tracts correlated with these ophthalmological measurements (P < 0.05). However, no significant correlation was observed between the mean diffusivity of the optic radiations and the ophthalmological measurements (P > 0.05). CONCLUSIONS The optic tracts and optic radiations of primary open-angle glaucoma patients demonstrated radiological evidence of neurodegeneration. This varied with damage to the optic disc and with the loss of visual function. Tract-based spatial statistical analysis of diffusion tensor imaging is an objective and effective tool for detecting the loss of cortical nerve fibres in primary open-angle glaucoma.
Collapse
Affiliation(s)
- Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Michelson G, Engelhorn T, Wärntges S, El Rafei A, Hornegger J, Doerfler A. DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices. Graefes Arch Clin Exp Ophthalmol 2012; 251:243-53. [PMID: 22366916 DOI: 10.1007/s00417-011-1887-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/01/2011] [Accepted: 11/25/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND In glaucoma, damage of retinal ganglion cells may continue to the linked optic radiations. This study investigates the correlation of glaucoma severity indicators with parameters of axonal and myelin integrity of the optic radiations. METHODS In this observational case-control study, 13 patients with normal-tension glaucoma, 13 patients with primary open-angle glaucoma, and seven control subjects (mean age, 57.6 ± 12.5 years) were randomly selected for diffusion tensor imaging (DTI) of the optic radiations. The results of the frequency doubling test (FDT) and the HRT-based linear discriminant functions of Burk (BLDF) and Mikelberg (MLDF) were correlated with the mean of the fractional anisotropy (FA), apparent diffusion coefficient (ADC), and radial diffusivity (RD) of the optic radiations. Multiple correlation analysis, corrected for age, stage of cerebral microangiopathy, diagnosis group, and gender was conducted at increasing thresholds of linear anisotropy (C(L)) to reduce mismeasurements because of complex fiber situations. RESULTS The best correlations were found for BLDF with FA at C(L) threshold 0.3 (0.594, p = 0.001), with ADC at C(L) 0.4 (-0.511, p = 0.005), and with RD at C(L) 0.4 (-0.585, p = 0.001). MLDF correlated with FA at C(L) 0.4 (0.393, p = 0.035). The FDT score correlated with FA at C(L) 0 (-0.491, p = 0.007) and with RD at C(L) 0 (-0.375, p = 0.045). CONCLUSIONS In glaucoma, DTI-derived parameters of the axonal integrity (FA, ADC) and demyelination (RD) of the optic radiation are linked to HRT-based indices of glaucoma severity and to impairment of the spatial-temporal contrast sensitivity.
Collapse
Affiliation(s)
- Georg Michelson
- Department of Ophthalmology, University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|