1
|
Peterson P, Trinh L, Månsson S. Quantitative 1 H MRI and MRS of fatty acid composition. Magn Reson Med 2020; 85:49-67. [PMID: 32844500 DOI: 10.1002/mrm.28471] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue as well as other depots of fat (triglycerides) are increasingly being recognized as active contributors to the human function and metabolism. In addition to the fat concentration, also the fatty acid chemical composition (FAC) of the triglyceride molecules may play an important part in diseases such as obesity, insulin resistance, hepatic steatosis, osteoporosis, and cancer. MR spectroscopy and chemical-shift-encoded imaging (CSE-MRI) are established methods for non-invasive quantification of fat concentration in tissue. More recently, similar techniques have been developed for assessment also of the FAC in terms of the number of double bonds, the fraction of saturated, monounsaturated, and polyunsaturated fatty acids, or semi-quantitative unsaturation indices. The number of papers focusing on especially CSE-MRI-based techniques has steadily increased during the past few years, introducing a range of acquisition protocols and reconstruction algorithms. However, a number of potential sources of bias have also been identified. Furthermore, the measures used to characterize the FAC using both MRI and MRS differ, making comparisons between different techniques difficult. The aim of this paper is to review MRS- and MRI-based methods for in vivo quantification of the FAC. We describe the chemical composition of triglycerides and discuss various potential FAC measures. Furthermore, we review acquisition and reconstruction methodology and finally, some existing and potential applications are summarized. We conclude that both MRI and MRS provide feasible non-invasive alternatives to the gold standard gas chromatography for in vivo measurements of the FAC. Although both are associated with gas chromatography, future studies are warranted.
Collapse
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lena Trinh
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Trinh L, Lind E, Peterson P, Svensson J, Olsson LE, Månsson S. High-Resolution MR Imaging of Muscular Fat Fraction-Comparison of Three T 2-Based Methods and Chemical Shift-Encoded Imaging. Tomography 2018; 3:153-162. [PMID: 30042979 PMCID: PMC6024436 DOI: 10.18383/j.tom.2017.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical shift-encoded imaging (CSEI) is the most common magnetic resonance imaging fat–water separation method. However, when high spatial resolution fat fraction (FF) images are desired, CSEI might be challenging owing to the increased interecho spacing. Here, 3 T2-based methods have been assessed as alternative methods for obtaining high-resolution FF images. Images from the calf of 10 healthy volunteers were acquired; FF maps were then estimated using 3 T2-based methods (2- and 3-parameter nonlinear least squares fit and a Bayesian probability method) and CSEI for reference. In addition, simulations were conducted to characterize the performance of various methods. Here, all T2-based methods resulted in qualitatively improved high-resolution FF images compared with high-resolution CSEI. The 2-parameter fit showed best quantitative agreement to low-resolution CSEI, even at low FF. The estimated T2-values of fat and water, and the estimated muscle FF of the calf, agreed well with previously published data. In conclusion, T2-based methods can provide improved high-resolution FF images of the calf compared with the CSEI method.
Collapse
Affiliation(s)
- Lena Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Emelie Lind
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lars E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
3
|
Siracusano G, La Corte A, Milazzo C, Anastasi GP, Finocchio G, Gaeta M. On the R 2⁎ relaxometry in complex multi-peak multi-Echo chemical shift-based water-fat quantification: Applications to the neuromuscular diseases. Magn Reson Imaging 2016; 35:4-14. [PMID: 27569370 DOI: 10.1016/j.mri.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Investigation of the feasibility of the R2⁎ mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio. THEORY AND METHODS The improvement of the performance of state of the art magnetic resonance imaging (MRI) relaxometry algorithms is challenging because of a non-negligible bias and still unresolved numerical instabilities. Here, R2⁎ mapping reconstructions, including complex fitting with multi-spectral fat-correction by using single-decay and double-decay formulation, are deeply studied in order to investigate and identify optimal configuration parameters and minimize the occurrence of numerical artifacts. The effects of echo number, echo spacing, and fat/water relaxation model type are evaluated through both simulated and in-vivo data. We also explore the stability and feasibility of the fat/water relaxation model by analyzing the impact of high percentage of fat infiltrations and local transverse relaxation differences among biological species. RESULTS The main limits of the MRI relaxometry are the presence of bias and the occurrence of artifacts, which significantly affect its accuracy. Chemical-shift complex R2⁎-correct single-decay reconstructions exhibit a large bias in presence of a significant difference in the relaxation rates of fat and water and with fat concentration larger than 30%. We find that for fat-dominated tissues or in patients affected by extensive iron deposition, MRI reconstructions accounting for multi-exponential relaxation time provide accurate R2⁎ measurements and are less prone to numerical artifacts. CONCLUSIONS Complex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.
Collapse
Affiliation(s)
- Giulio Siracusano
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le F. D'alcontres, 31, 98166, Messina, Italy; Department of Computer Engineering and Telecommunications, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Aurelio La Corte
- Department of Computer Engineering and Telecommunications, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Carmelo Milazzo
- Department of Biomedical sciences, Dental and of Morphological and Functional images, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical sciences, Dental and of Morphological and Functional images, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le F. D'alcontres, 31, 98166, Messina, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143, Roma, Italy
| | - Michele Gaeta
- Department of Biomedical sciences, Dental and of Morphological and Functional images, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| |
Collapse
|
4
|
Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: A comprehensive review. Comput Biol Med 2016; 71:174-89. [PMID: 26945465 DOI: 10.1016/j.compbiomed.2016.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Fat accumulation in the liver causes metabolic diseases such as obesity, hypertension, diabetes or dyslipidemia by affecting insulin resistance, and increasing the risk of cardiac complications and cardiovascular disease mortality. Fatty liver diseases are often reversible in their early stage; therefore, there is a recognized need to detect their presence and to assess its severity to recognize fat-related functional abnormalities in the liver. This is crucial in evaluating living liver donors prior to transplantation because fat content in the liver can change liver regeneration in the recipient and donor. There are several methods to diagnose fatty liver, measure the amount of fat, and to classify and stage liver diseases (e.g. hepatic steatosis, steatohepatitis, fibrosis and cirrhosis): biopsy (the gold-standard procedure), clinical (medical physics based) and image analysis (semi or fully automated approaches). Liver biopsy has many drawbacks: it is invasive, inappropriate for monitoring (i.e., repeated evaluation), and assessment of steatosis is somewhat subjective. Qualitative biomarkers are mostly insufficient for accurate detection since fat has to be quantified by a varying threshold to measure disease severity. Therefore, a quantitative biomarker is required for detection of steatosis, accurate measurement of severity of diseases, clinical decision-making, prognosis and longitudinal monitoring of therapy. This study presents a comprehensive review of both clinical and automated image analysis based approaches to quantify liver fat and evaluate fatty liver diseases from different medical imaging modalities.
Collapse
Affiliation(s)
- Evgin Goceri
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA.
| | - Zarine K Shah
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Rick Layman
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Xia Jiang
- Department of Radiology, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Metin N Gurcan
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
5
|
Karampinos DC, Ruschke S, Dieckmeyer M, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Baum T. Modeling of T2* decay in vertebral bone marrow fat quantification. NMR IN BIOMEDICINE 2015; 28:1535-1542. [PMID: 26423583 DOI: 10.1002/nbm.3420] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Bone marrow fat fraction mapping using chemical shift encoding-based water-fat separation is becoming a useful tool in investigating the association between bone marrow adiposity and bone health and in assessing cancer treatment-induced bone marrow damage. Vertebral bone marrow is characterized by short T2* relaxation times, which are in general different for the water and fat components and can confound fat quantification. The purpose of the present study is to compare different approaches to T2* correction in chemical shift encoding-based water-fat imaging of vertebral bone marrow using single-voxel MRS as reference. Eight-echo gradient-echo imaging and single-voxel MRS measurements were made on the spine (L3-L5) of 25 healthy volunteers. Different approaches were evaluated for correction of T2* effects: (a) single-T2* correction, (b) dual-T2* correction, (c) T2' correction using the a priori-known T2 from the MRS at each vertebral body and (d) T2' correction using the a priori-known T2 equal to previously measured average values. Dual-T2* correction resulted in noisier imaging fat fraction maps than single-T2* correction or T2' correction using a priori-known T2. Linear regression analysis between imaging and MRS fat fraction showed a slope significantly different from 1 when using single-T2* correction (R(2) = 0.96) or dual-T2* correction (R(2) = 0.87). T2' correction using the a priori-known T2 resulted in a slope not significantly different from 1, an intercept significantly different from 0 (between 2.4% and 3%) and R(2) = 0.96. Therefore, a T2' correction using a priori-known T2 can remove the fat fraction bias induced by the difference in T2* between water and fat components without degrading noise performance in fat fraction mapping of vertebral bone marrow.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | | | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Jan S Bauer
- Section of Neuroradiology, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| |
Collapse
|
6
|
Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, Månsson S, Elding Larsson H. Magnetic resonance imaging reveals altered distribution of hepatic fat in children with type 1 diabetes compared to controls. Metabolism 2015; 64:872-8. [PMID: 25982699 DOI: 10.1016/j.metabol.2015.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Children with type 1 diabetes have been identified as a risk group for non-alcoholic fatty liver disease (NAFLD). The aim was to compare total hepatic fat fraction and fat distribution across Couinaud segments in children with type 1 diabetes and controls and the relation of hepatic fat to plasma and anthropometric parameters. METHODS Hepatic fat fraction and fat distribution across Couinaud segments were measured with magnetic resonance imaging (MRI) in 22 children with type 1 diabetes and 32 controls. Blood tests and anthropometric data were collected. RESULTS No children had NAFLD. Children with type 1 diabetes had a slightly lower hepatic fat fraction (median 1.3%) than controls (median 1.8%), and their fat had a different segmental distribution. The fat fraction of segment V was the most representative of the liver as a whole. An incidental finding was that diabetes patients treated with multiple daily injections of insulin (MDI) had a fat distribution more similar to controls than patients with continuous subcutaneous insulin infusion (CSII). CONCLUSIONS In children with type 1 diabetes, NAFLD may be less common than recent studies have suggested. Children with type 1 diabetes may have a lower fat fraction and a different fat distribution in the liver than controls. Diabetes treatment with MDI or CSII may affect liver fat, but this needs to be confirmed in a larger sample of patients. The heterogeneity of hepatic fat infiltration may affect results when liver biopsy is used for diagnosing fatty liver.
Collapse
Affiliation(s)
- Simon E Regnell
- Paediatric Endocrinology, Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö, Sweden.
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lena Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Per Broberg
- Department of Oncology and Pathology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Peter Leander
- Department of Radiology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Åke Lernmark
- Paediatric Endocrinology, Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Elding Larsson
- Paediatric Endocrinology, Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
MR Quantification of the Fatty Fraction from T2*-corrected Dixon Fat/Water Separation Volume-interpolated Breathhold Examination (VIBE) in the Assessment of Muscle Atrophy in Rotator Cuff Tears. Acad Radiol 2015; 22:909-17. [PMID: 24709378 DOI: 10.1016/j.acra.2014.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
Abstract
RATIONALE AND OBJECTIVES To assess the usefulness of T2*-corrected fat fraction (FF) map from volume-interpolated breathhold examination (VIBE) magnetic resonance (MR) sequence in patients with the rotator cuff pathology. MATERIALS AND METHODS The phantom study was performed to validate the FF maps. Eighty-nine shoulder MR arthrographies were analyzed: (1) divided into three groups namely tendinopathy/normal tendons, partial-thickness tears, and full-thickness tears, and (2) occupation ratio (OR) was measured for muscular atrophy. Uncorrected and T2*-corrected FF maps were reconstructed from the VIBE images. The Pearson correlation test was used to correlate the FFs with ORs. The FF and the OR were compared between groups using the Student t test. RESULTS T2*-corrected FF maps could provide a higher correlation than uncorrected FF maps. There were significantly negative correlations between the ORs and the FFs (P < .01). In the normal and the partial-thickness tear group, the OR did not show a significant difference, although the FF maps showed a significant difference (P < .01). CONCLUSIONS This quantitative assessment of the T2*-corrected FF in the rotator cuff muscles was found to be reliable and correlated well with the ORs. The T2*-corrected FF maps could be used for more sophisticated assessments of the fat even in the partial-thickness tear.
Collapse
|
8
|
Peterson P, Romu T, Brorson H, Dahlqvist Leinhard O, Månsson S. Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. J Magn Reson Imaging 2015; 43:203-12. [DOI: 10.1002/jmri.24972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Pernilla Peterson
- Department of Medical Radiation Physics, Malmö, Department of Translational Medicine; Lund University, Skåne University Hospital; Malmö Sweden
| | - Thobias Romu
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Biomedical Engineering, IMT; Linköping University; Linköping Sweden
| | - Håkan Brorson
- Plastic and Reconstructive Surgery, Department of Clinical Sciences in Malmö; Lund University, Skåne University Hospital; Malmö Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV); Linköping University; Linköping Sweden
- Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| | - Sven Månsson
- Department of Medical Radiation Physics, Malmö, Department of Translational Medicine; Lund University, Skåne University Hospital; Malmö Sweden
| |
Collapse
|
9
|
Peterson P, Svensson J, Månsson S. Relaxation effects in MRI-based quantification of fat content and fatty acid composition. Magn Reson Med 2013; 72:1320-9. [PMID: 24327547 DOI: 10.1002/mrm.25048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate various sources of bias in MRI-based quantification of fat fraction (FF) and fatty acid composition (FAC) using chemical shift-encoded techniques. METHODS Signals from various FFs and FACs and individual relaxation rates of all signal components were simulated. From these signals, FF and FAC parameters were estimated with and without correction for differences in individual relaxation rates. In addition, phantom experiments were conducted with various flip angles and number of echoes to validate the simulations. RESULTS As expected, T(1) weighting resulted in an overestimation of the FF, but had much smaller impact on the FAC parameters. Differences in T(2) values of the signal components resulted in overestimation of the FAC parameters in fat/water mixtures, whereas the estimation in pure oil was largely unaffected. This bias was corrected using a simplified signal model with different T(2) values of water and fat, where the accuracy of the modeled T(2) of water was critical. The results of the phantom experiment were in agreement with simulations. CONCLUSION T(1) weighting has only a minor effect on FAC quantification in both fat/water mixtures and pure oils. T(2) weighting is mainly a concern in fat/water mixtures but may be corrected using a simplified model.
Collapse
Affiliation(s)
- Pernilla Peterson
- Department of Medical Radiation Physics, Malmö, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
10
|
Harry H, Kan HE. Quantitative proton MR techniques for measuring fat. NMR IN BIOMEDICINE 2013; 26:1609-29. [PMID: 24123229 PMCID: PMC4001818 DOI: 10.1002/nbm.3025] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/13/2013] [Accepted: 08/19/2013] [Indexed: 05/09/2023]
Abstract
Accurate, precise and reliable techniques for the quantification of body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton MR methods address this need by providing an array of relaxometry-based (T1, T2) and chemical shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short- and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article succinctly describes the principles that differentiate water and fat proton signals, summarizes the advantages and limitations of various techniques and offers a few illustrative examples. The article also highlights recent efforts in the MR of brown adipose tissue and concludes by briefly discussing some future research directions.
Collapse
Affiliation(s)
- Houchun Harry
- Corresponding Author Houchun Harry Hu, PhD Children's Hospital Los Angeles University of Southern California 4650 Sunset Boulevard Department of Radiology, MS #81 Los Angeles, California, USA. 90027 , Office: +1 (323) 361-2688 Fax: +1 (323) 361-1510
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|